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EVALUATION

The need for developing new tools and techniques for producing mor<
reliable low cost software, as noted in such coctrmeRs ~ the Comduc,
Control Information Processing CCIP-85 Study (Informaticn Proéessing/Data
Autcmation Implications of Air Force Command and Control Requirements in
the 1980's), has led to attempts to analyze the nature and types of soft-
ware errors in order tc be able to accurately predict error occurences,
and to be able to accurately predict the reliability of software produced.
Many different types of models of tl.e software debugging process have
been formulated for cnis purpose. However, a technique that has not been
adequately -pplied to software errors is the use of statistical regressicn
analysis to relate error occurrences to various structural, complexity,
and programmer-related characteristics of a software package.

This effort was initiated in  :wcponse to the CCIP-85 Stidy and this
need for applying regressidn techniques to software errors, and fits into
the goals of RADC TPO No. 5, Software Cos - Reduction (formerly RADC TPO
No. 11, Software Sciences Technology), in particular the area of Scftware
Quality (Software Modeling). The report focuses on the analysis, using
multiple linear regressiog techniques, of software ervor data and related
structural, complexity, and programmer-related variables extracted from
two large Department of Defense command and control software projects
totalling over 250,000 lines of higher ordar language source code. The
importance of performing this analysis is that it represents the first

attempts to use linear regression techniques for comparing different



software projects, in order to determine those characteristics that statis-
tically impact on the occurrence of software errors.

The conclusions drawn under this analysis will, therefore, provide
new insights into those factors fhaé influence software errors. In
addition, results of this analysis will be used as the basis for future,
continuing analysis for collection errors using regression techniques, and
will provide a baseline for collection of software characteristics on
future software projects that will support regression analysis of soft-
ware errors. Finally, the results of this and future similar statistical
analysis efforts will provide the necessary understanding of, and insights
into, the software development process, through the understanding of those

factors that lead to the occurrence of software errors, that is required

in order to produce the high quality, low cost software desired.

ALAN N. SUKERT, Captain, USAF
Project Engineer




1.0 INTRODUCTION

This document is the final technical report for the
Statistical Prediction Model study, RADC Contract No. F30602-
76-C~0213, This eight month study focused on the statistical
prediction of programming errors using a wide range of pro-
gram structure/complexity variables and selected programmer
variables as predictors, The authors view this study as one
of many continuing studies which need to be performed that
further investigate how programmers, program characteristics,
management methoda, and software testing and design factors
influence and contribute to errors in programs.

This report is organized topically into eight interrelated
sections and one technical appendix. A description of the
major topics covered in each section is as follows:

e Section 1,0 presents a background discussion on the
role and importance of the prediction of programming
errors for improving software gquality and reliability.
The purpose of this study is also stated in this section.

e Section 2.0 presents a detailed discussion of background
information on the two data samples that were analyzed j
by this study. This discussion focuses on the software
development environment, software testing considerations,
programming error definition and classification, predictor 1
variables, and statistical characteristics of both samples.

e Section 3.0 briefly discusses selected limitations of
the data in both samples that could affect the predictability
of errors in this study. Also, three important preliminary
analysis findings are discussed as they relate to the
error prediction equations that were developed for this
study.




Section 4.0 presents a brief discussion of the multiple
linear regression analysis method and the stepwise
regression procedure that were used to obtain the error
predictions for this study.

Section 5.0 discusses various operational and analytical
considerations and decisions made which pertain to the
error prediction equations developed for this analysis.

Section 6.0 presents a summary of the technical results
of this study as they pertain to the predictability of
errors and error rate in both data samples. A detailed
presentation and discussion of the results for each
sample follows this summary.

Section 7.0 presents additional analysis of the error
rate per program measure and its relationship with the
programmer rating and workload variables, and also its
interesting relationship with total source instructions
as observed in this study.

Section 8.0 contains the major conclusions and recom=-
mendations of this study. Recommendations are discussed
which pertain to (1) improving the consistency of pre-
diction of programming errors in future software error
prediction studies, (2) further research requirements,

and (3) propcsed data collection support tools and
techniques.

Appendix A contains a brief technical discussion of the
measure of programming errors to be analyzed in software
error prediction studies and its dependence upon the
method of testing used during the software test period.

A o a4t kB ek
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1,1 Background

Software quality has many facets, including availability,
ease of maintenance, CPU run-time required, and reliability.
Precise definitions of quality or its components do not exist,
However, software reliability, in spite of a lack of quantita-
tive definition, has received a great deal of attention and
rightly so, due to its pervading influence on the other aspects
of quality., Without a reliable scftware system, availibility,
run-time, maintenance, etc., are meaningless.

In spite of the ambiguity and lack of consistency in the
definitions of software reliability, one thing common to them
all is that they do include programming errors. The analysis
and prediction of programming errors then becomes an area that:

would contribute to the assessment and improvement of software
quality.

Analysis of errors becomes important from the standpoint
of determining their possible causes so that management con=-
trols may be exercised to reduce them, Prediction is important
as a tool for the analysis, as well as contributing to the
testing and certification, of a software system, If, for
example, fewer errors have been found than a prediction formula
indicates are present, then more testing should be performed.

One approach that is being considered for providing
researchers and management with a more definitive understand-
ing of factors which affect software quality and reliability

1-3
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is that of predicting programming errors through the use of
statistical regression models. It is through the use of these
prediction models that:

(1) estimates of the software reliability during each

phase of the software development effort could be
provided;

(2) the amount of further testing required to achieve

or insure a yiven level of program quality could
be estimated; and

(3) the relative effects of selected management control and
both design and coding techniques on the reduction
of programming errors, as aids for improving soft=-
ware quality and reliability, could be assessed.

Although recent studies have demonstrated the feasibility
of using linear models and regression analysis methods to pre-
dict errors in programs, additional studies are needed which
apply these methodologies in order to assess their value and
importance for error prediction purposes,

1.2 PurEose

The purpoge of thils study is to apply the statistical
method of multiple linear regression analysis to predict pro-
gramming errors, using a variety of variables which relate
to programmer capability, program structure, and program
complexity as predictors of errors. Two distinct data samples
will be analyzed by this study. kach sample contains data




on programming errors and Program characteristics collected
for purposes other than this study, and provided by RADC.
Both samples reflect software that was developed by inde-
pendent contractors for different,
control applications,

large~scale, command and
A combined total of 5539 programming
errors, resulting from 783 programs with a total of 296,595
Source instructions, are analyzed.

e Tl Pt a A
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2.0 DESCRIPTION AlD CHARMACTERISTICS OF DATA SAMPLES

Two distinct samples of data were analyzed during this
study. Each data sample contains data on both programming
errors and numerous program characteristics. Throughout this
report the program characteristics that arn presented, dis-
cussed, and analyzed are referred to as program structure/program
complexity variables. Although much of this program charac-
teristic data represents, for example, counts of the number of
program instructions of a certain type that may have appeared
i . the program, each individual program characteristic vari-

T TR AT MR N T IR T R Te VeTN T I R et e

able can be assumed to be one of a variety of measures or
estimates of the program structure and/or complexity.

The two data samples are referred to as sample S and

AT T RRERLS AN TN I ey e T

sample T, respectively, throughout this report. The following
sections of this revort present baclhground information and
other relevant statistics concerning the software development
environments, testing considerations, and error data charac-
teristics of eacih sample which will be of importance

when evaluating the prediction equation results obtained from

oo T s T Y N s IR ALY

each of the samples. Table 2-1 prescnts a brief summary of
the differences which existed between each of thesc samples on
various gross level project and program characteristics.
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2.1 Sample S

2.1.1 Software Development Lnvironment

Sample S software, which consisted of 534 programs, was
developed as three command and control systems which for the
purposes of this report are to be referred to as projects M,

B, and P, respectively. This software was developed jointly by
two private industry organizations from mid-=1969 through late
1973, and represents an effort of approximately 5500 man-
months., These programs consisted of 181,249 source instruc-
tions written in CEiTRA, an Inglish-like, special purpose,
higher level language that was designed for use only on Central
Logic and Control (CLC) computers. The programs analyzed
represent about 80 percent of the approximately 644 programs with
240,000 source instructions that were written for the entire
command and control application. 'The softwvare development
effort attemptad to conform to the traditional approach of
building large software systems:

(1) definition of system performance requirements,

(2) design of functional specifications from which pro-
gramming specifications are written,

(3) coding and unit testing of those software elements

comprising a prorcess subfunction,

(4) integration testing of the elecrents within a
subfunction, and

(5) integration testing of tie system processes.

2-3
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Significant, but not always successful, attempts were made
to write system design specifications and develop software be-

fore the system performance requirements and functional speci-

fications were completed. In projects M and P for example,

serious program design work and coding were initiated during the

period of June through August 1969, although the performance

requirements were not completed until June 1970, Using the per-

formance requirements as a base, a design team from one of the
organizations defined the system functional design requirements
and specifications from which software design teams from both
organizations generated the formal programming design specifi-

cations. Where these latter specifications did not coincide

with the software already written, the original code had to be

rewritten,

A description of the extant to which the new programming
technologies (e.g., structured programming, top~down design,
etc,) were implemented and applied during the development of
each of the three sample S software projects is presented in

Table 2-2 along with several basic program length and error

statistics for each project. It appears from Table 2-2 that

project P was the only project that actually implementéd or

applied these new technologies to any large extent,

It is important to note here one final consideration regard-

ing these new technologies as applied in sample S, No informa-

tion is available, other that that wnich appears in Table 2-2,
to give any indication of how consistently and with what
thorougiiness and quality the concepts and principles which

underlie these new technologies were strictly followed in the

programs developed for sample S, Necessarily then, and in line

with the stated purposes of this research study, no comparisons
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TABLE 2-2. APPLICATION OF NEW PROGRAMMING TECHNOLOGIES
IN SAMPLE S PRQUECTS

M B8 P
NO. OF PROGRAMS 395 184 35
TOP DOWN DESIGN 1.8%(3) 188.8%C104) 48.6%C17)
STRUCTURED CODE 2.8%C11) g.0%Co>d 65.7%(23)
CHIEF PROGRAMMER g.a%Ce) g.8%C@d 51.4%(C18)
TCAM
PROGRAMMING g.0%C@> g.8%Cg) 97.1%(34)
LIBRARIAN
AVERAGE SOURCE 345,2 212.3 651.9
INSTRUCTIONS
AVERAGE ERRORS/ 6.8 6.4 6.8
PROGRAM a
AVERAGE ERROR RATE 2.0 2.8 1.0

®AVERAGE ERROR RATE = A MEASURE OF TOTAL ERRORS FOUND PER
199 LINES OF SOURCE CODE FOR EACH PROUECT.

2-5
. | RPNt Sl S et el ==
g TRy ~otih.g B} AT
R b MR A




FT

are made or inferences drawn concerning the relative effective-
ness of these technologies for improving software quality and
reliability.

2,1,2 Software Testing Considerations

Each of the three software development projects of sample
S adhered to a basically standard code writing and testing
scheme, One programmer was usually assigned the responsibility
of writing several programs which would subsequently interface
as a single functional unit, with several of these units forming
a subfunction, When a program was compiled error-free and unit
tested, it was combined with its related counterparts to form
a functional unit for element testing. This testing was per-
formed by the programming team and was usually the prerequisite
for submitting a system's subfunctions to the Teat and Integra=-
tion (T6I) team, Immediately prior to the T&I phase, all the
subfunctions of a system would be bound together to form that
system's thread, It was this thread which was delivered to
TéI for integration testing, The T6I phase assured that the
subfunctions of a system interfaced properly and represented
the beginning of formal error recording for the software being
tested., Trouble reports describing the error and its severity
were forwarded to the respective programming team for resolu-
tion., To expedite error resolution, patches to the object

" code were made prior to resubmission to the T6I group. The

applicable source code was subsequently updated, usually when
a naew version of a proceas was released,

The system integration tests were designed to verify that
the system could respond in certain areas of basic system
capabilities within predicted tolerances. The testing
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required to support the final demonstration or acceptance tests
in each test case was assumed to begin with single-site tests,
in which communications with the rest of the system were usually
simulated. Later tests were built up to include all sites
netted together., Table 2-3 presents the software development
and testing dates that were reported for each of the three
projects of sample S.

No other specific data was available for this study with
respect to the amount and thoroughness of testing that sample

S programs underwent during the T&I phase of software develcpment.

2.1.3 Definition, Classification, and Collection of Error Data

For sample S, programming errors were defined as those
errors found during the TEI phase which could be attributed to
the programmer and required a change to the program's source
codae, At the time this error data was provided, no additional
classification of errcrs had been attempted, (Presently,
however, there is an effort uwwerway, supported by RADC, that
will result in a thorough classification of the various error
types for the sample S programs being analyzed for this report.)

With respect to error data collectinn for sample S programs,
early in this analysis eflort inforral discussions with por-
sonnel responsible for the sample S data collection revealed
that the data collection on program characteristics may have
been obtained as much as three years after the error data was
collected, This delay is estimated based on the dates provided
in Table 2-3, After the errors were detected, programs were
modified as a direct result of these errors. Programs continued
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to be modified after the TSI phase as part of the normal
growth process of the respective systems being: developed.

Since each of the predictor variables in Bample $ represent
program characteristic variables, and given that there was no
measure cf the extent to which these program characteris-
tics had been modified between the time when the error
and predictor variable data were collected, a serious question
arose as to the validity of the results obtained from a multiple
regression analysis of this data. This condition might result
in the anomalous position of attempting to predict errors from
data which to some extent at least may have resulted from the
errors. '

Additional discussion with personnel responsible for the
sample S data collection indicated that the extent of the
modifications made to the program characteristics as a result
of the errors being corrected was minor. However, it was
apparent from having initially reviewed the sample S data
that the variability of some of the predictor variables was
also minor. Thus, the effect of the minor modifications on the
conclusions drawn from predictor variables with minor vari-
ability became an unknown which could not be asscssed.

In order to deal with this problem in such a way that the
data could still be utilized for error prediction purposes,
a decision was made to cutegorize each of the independent
variables for this sample. This categorization procedure
involved examining the range of each independent variable,
grouping the scores into equal intervals, and the assigning
of new scores to the intervals. For example, for one variable
all scores in the interval 0-99 would be rescored as 1; scores
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in the interval from 100-199 would be rescored as 2, etc,,

Clearly, this grouping technique when implemented would un-

doubtedly throw away some useful data; it would also eliminate

part of the error due to assuming that code changes after

error counts were insignificant., If modifications to the ,
program characteristics were indeed minor as had been indicated, j
then categorizing the data would give a truer picture of what _ ;
these characteristics would have been at error collection time
for all values of the predictor variables except those at the
boundaries of the class intervals. Thus, conclusions drawn
would have relatively more validity.

The categorization procedure was applied to all sample S
predictor variab%aﬁ. Intercorrelation matrices were then
obtained for each of the projects which showed the inter-
correlations among the predictors and between the predictors
and the criterion variable, programming errors. Each of these
sets of intercorrelations was then compared with the respective
intercorrelations obtained when the original (uncategorized)
predictor variable values were used. Essentially, no
significant statistical differences were found among the two
sets of correlation matrices for each of the projects, Thus,
after having performed this rather extensive computational
task of categorizing the data and then comparing various sets
of correlation matrices, a firm decision was made to continue
on with tiie multiple linear regression analysis using the
original data as obtained for sample S.

Based on the above discussion of problems associated with
the sample S error data collection, it should be noted tnat
any data that is to undergo a secondary analysis i3 subject
to the same or similar problems that were discovered when
attempting to analyze this data., Accessibility of the sample §




personnel led directly to the discovery of these problems.
i Other data in the future could be collected by personnel not

as accessible, thus resulting in problems at least as serious,
though undiscoverable.

The problems discovered thus far lead to a strong argument
1 for (1) identifying or determining what use is to be made of
the data before it is collected, and (2) developing and

4 providing the necessary data collection instruments, procedures,

formats, and software support systems that can collect and
store repeated snapshots of program characteristice and error

data throughout varicus phases of the software development
cycle.

2.1.4 Predictor Variables

A list and description of the 54 predictor variables
that were made available for the analysis of sample S programs
is praesented in Table B~l1 of Appendix B, Variables 56 through
109 were constructed during this study in order to investigate
their effectiveness in predicting error rate/program for this
sample, Further discussion of these variables (i.e., 56-109)
is presented in section 3.0.

e i e+ (T ST SR S ST G T QTG T TR T T T

Each of these initial 54 predictors was collected as
previously mentioned during December 1974 and January 1975
via an automatic scanner program developed by sample S data
collection personnel, 'This scanner program could interrogate

i source code programs that were written in CENTRAN, ALC, or
! PL/1.
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It is important to note that other variables in addition
to the 54 that were collected could have been measured and
collectaed via this scanner program, For example, Lock Macros
(variable X20) is the only one of several different types of
CENTRAN system macros that was collected separately. All other
system macros used in the program, including Lock Macros, are
summed into variable X10, System Macros. Basically then,
what variables were collected by sample S personnel clearly
represent the variables hypothesized by that group to be of
some particular interest and importance for their own purposes
of analysis, The point made here is that other variables which
may have contributed significantly to the prediction of pro-
gramming errors were not collect-d in the sample S data and
resultantly were not available for review, analysis, and
evaluation by this study. There is a definite need for the
definition of a uniform set of program characteristics that
may be applied to a wide variety of projects, By doing so,
it would be possible to compare the results of one project with
another and thus draw conclusions applicable to programming in
general, not merely to programming as reflected by one specific
project,

Lastly, with respect to the first 54 predictors it is
important for analysis purposes to identify the various linear
combinations that existed among these variables, Variable Xl
was identified as a linear combination of variables X7, X8, X10,
X1ll, X15, X16, X441, and a variable that was not separately
counted, the number of assignment instructions not involving
arithinetic operations (e.g,, A=l; B=5 etc,). System Macros (X1l0)
is a linear combination of variables X3, X9, X20, and any other
CENTRAN System Macros, Variable X17, Scaling/Rounding Operations,
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is considered a part of Centran Functions (X16). Variable

X39, Total Variables, is a linear combination of variables X22,
X25, X27, X29, X311, X33, X35, and X37, Variable X40, Total
Variable Frequency, is a combination of variables X23, X24, X26,
X28, X30, x32, X34, X36, and X38, Finally, variable Xul,

Total Do Loops, is a combination of variables X18, X19, X42,
XU3, Xdy4, X45, X446, and X47,

2.1.5 Characteristics of Sample Data

During the initial phases of the analysis, univariate and
bivariate frequency distributions were obtained for each of
the 54 predictors and for each of the predictor variables with
errors/program. For the dependent variable and most of
the predictor variables the univariate frequency distributions
were asymetric with the higher frequencies concentrated
toward the lower end of the variable and the smaller frequencies
asymptotically spread out toward the higher end., The bivariate
distributions basically showed the existence of a predominant
number of very low to moderate linear relationships existing
between the various predictor variables and programming errors.
There was a clear indication of a tendency toward non-~linearity
in many of the relationships between the predictor variables
and errors, Based on these observations it is possible that
better predictions could be obtained by non-linear transforma-

tions, of either or both programming errors and the predictor
variables,

In addition, based on the sample S project statistics
as presented in Table 2-4 and on differences that were observed
between means and measures of variability of predictors be-
tween projects, there was a clear indication that the three




TABLE 2.4 SAMPLE S PROJECT STATISTICS

L i it e Sl e

ALL I
STATISTICS M B p PROJECTS
NO. OF PROGRAMS (WITH & | 395 144 35 534
WITHOUT ZERO ERRORS)
TOTAL SOURCE INSTRS. 136,358 | 22,475 22,816 181,249
TOTAL ERRORS 2,673 622 238 3533
AVG. PROGRAM LENGTH 345,21 - 212,26 651.89 339,42
AVG. ERRORS/PROGRAM 6.77 . 5,98 6.8¢ 6.62
AVG. ERROR RATE 1.96 P 2,82 1.04 1.95
AVG., ERROR RATE/PGM. 2.42 ' 3,26 1.29 2.51
PERCENT OF CODE WITH 9.82% 5.44% g.30% 8.74Y%
ZERO ERRORS .
PERCENT OF PROGRAMS 22,78% 8.65% 3.09% 18,54%
WITH ZERO ERRORS
NO. OF PROGRAMS (WITH 345 95 35 435
1 OR MORE ERRORS)
TOTAL SOURCE INSTRS. 122,971 | 2¢,882 22,816 166,669
TOTAL ERRORS 2,673 622 238 3533
AVG. PROGRAM LENGTH ug3.17 | 219.81 651.89 424,96
AVG. ERRORS/PGM, 8.76 6.55 6.8¢ 8.12
AVG. ERROR RATE 2.17 2.99 1.94 2.06
AVG. ERROR RATE/PGM. | 3.13 3.57 1.29 3.p98
l
NO., OF PROGRAMS (WITH -] 9 ] 99
ZERO ERRORS)
TOTAL SOURCE INSTRS. | 13,387 | 1193 -—— 14,580
AVG. PROGRAM LENGTH , 148,74 | 132,56 -—- 14¢.65
SHORTEST/LONGEST PGMS.. 6/1f47 | 18/389  w-- 6/1047
2-14




sample S projects were quite hetarogeneous over a majority of ;
the dat& variables, As indicated in Table 2-4 many of the ﬁ
programs, both short and long, were reported as error free

as a result of testing during the T4I phase. Particularly

for the longer programs, this fact is hard to reconcile with !
past experience and logical reasonong on this subject which A
would contend that as programs become longer, the number of
paths through the program increases, which in turn increases
the program's compleiity, thus increasing the likelihood of a
larger number of errors residing in these longer programs,

Section 3.0 comtains additional discussion about programs with
zaero raported errors.
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2,2 Samgle T

2,2,1 Software Development Environment

Sample T software consists of 249 programs which repre- i

sent the initial delivery of a large command and control
software system, This system was functionally developed as
eight subsystemsa which for the purposes of this report are
rafarred to as subsystems A through H, respectively. The
software was jointly developed by two private industry organi=-

§
f
1
]

zations, with one of the organizations being responsible for
77 of the 249 programs that were written, The total programs
consisted of 115,346 source instructions written in JOVIAL J4,
: a higher level language which is compatible with the SYMON
f operating system, Batch type processing was the exclusive
operating mode used during this software development.

Software development for sample T subsystems followed a
"single increment" development approach and was goverened by

e e e b ez il D s e e, Ak i,

formally specified and approved requirements that had been
defined down to the function level, :Single increment", as
defined for sample T data, refers to a typical development cycle
in which each development phase is performed only once, This

is in contrast to the top-down, multiple increment approach,
where the cycle is repeated several times, first for a system
of stubs and subsequently when the stubs are replaced witﬂ
deliverable (i.e., ready to be tested) software.

Structurally, the smallest compilable unit of acurce code

was the routine or program. Programs were joined to form
functions, functions were joined to form subsystems, and
finally subsystems were joined to comprise the one command




and control system, This structure was produced by a project
organization based on the function being developed, This
meant that management of sample T software development was

sat up in conjunction with the software structure so that
personnel assigned to one work unit, ranging in size from 5

to 15 programmers, produced all the software in one or more

of the functions, No new or advanced programming technologies

were reported as being applied to sample T programs or imple-
mented during their development.

2.2,2 Software Testing Considerations

Testing of sample T software proceeded through five
saquential phases: development, validation, acceptance, inte-
gration, and operational demonstration. Development testing
was informal with all test cases being written and executed
by the program development personnel. No information was
provided regarding the length of time involved in this partic-
ular phase of testing, Validation testing marked the first
phase of formal software testing by an independent test group.
The objective of tests that were developed for both the valida-
tion and acceptance phases was to demonstrate that the sample T
programs did in fact satisfy or meet the formal functional
requirements that had been specified, Each of the tests applied
during these two phases was run at the subsystem level but
was designed to examine software performance at the program,
function, subsystem, and system levels, An important considera-
tion of thase two phases was that all testing was performed
on a master configuration and no alteration of the code was
allowed. Acceptance testing consisted of rerunning selectad
tests that had been used for validation testing, particularly
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those that specifically demonstrataed the scoftware requirements,
Customer acceptance of the software was dependent upon the
successful completion of these tests.

Integration testing was conducted by an independent con-
tractor whose major resgponsibility was to demonstrate that
the applications software interfaced correctly with the operat-
;i ing system and the system support software. Tests conducted
! during this time were similar in structurc and formality to
those tests that were used during the validation and acceptance
phasss. Tho operational demonstration phase was a short period
of testing which followed an operational timeline and which
used an operational data kase. The ohijective of tenting during
this periocd was to deronstrate the satisfactory poerformance
of the software in tie operational environment,

The approximate length of calendar time (as measured in
waeks) involved in each of the four phases of formal testing
for sample T programs was as Ffollows:

Validation 10.3
Acceptance 1.5
Integration 9.5
Operational Demonstration 2.3

B

With respect to error detection during eachi of these taest
phasas, it was reported that each phase found errors which
should have been detected in earlier phases. !lo measurcsa of
the amount or thoroughness of testing were available for

2-18




sample T software, Resultantly, it is not possible to state
what percent of, and to what extent, the code had been exercised

(given the possible range of input values for each test) during
this formal testing pericd.

2.2.3 Definition, Claasification, and Collection of Error Data

For sample T, programming errors were defined as those
j errors found during the four stages of formal testing which ?
| could be attributed to the programmer and required a change _5

to the program's source code, Programming errors wera classi-

fied as belonging to one of a variety of error cataegories which
fl either (1) described the symptoms of the problem (e.g., output ;
s raport has data entries that were not printed or are missing) 3
| or (2) actually identified the cause of the error (e.g,.,, logical
@ condition not tested which resulted in abnormal program end).

:g; : The 2006 programming errors that are analyzed in this
| raport were aggregated and classified according to nine majoxr
error categories. These categories along with the approximate
percentagae of errors that occurred in each are as follows:

PR T

Logic 26,0
. Data Handling 18,2 ,
3 Intarface 17.0
? Data Input/Output 16.4
Computational 9,0
, Other 8,5
' Data Base 4,1
Data Definition 0.8 .‘
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Unfortunately, for the sample T error data provided for
this study, there was no way of knowing which errors belonged
to each of the error categories as indicated. Only recently,
after a majority of the analysis had been completed, was it
possible to obtain a first available version of the automated
data which describes in what programs the particular error type
occurred, the phase of testing in which the error was de-
tectad, etc. Necessarily then, no analysis of programming
errors by error type or category was attempted during this
study.

Two important points regarding the error categories as
listed deserve brief mention at this time, First, the indi-
viduals who assigned or classified programming errors according
to these software error categories were not the same individuals
who had initially recorded the error in a Software Problem
Report (SPR)., The SPR and a closure report which contained an
explanation of the problem and the corrections required to
resolve the problem were usually the main sources of infor-
mation used to retrospactively classify the errors,

Secondly, it was raeported by the individuals who classified
the errors that not all errors were necessarily programming
errors, and that the probable source of these errors could be
tracad to four development activities:

(1) requirements specifications,

(2) design,

(3) coding, and

(4) maintenance (correction of other errors).

2-20
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When the sample T programming errors were classified according
to these probable sources: (1) errors were only able to be
clagsified either as design or coding errors based on the
available information provided by the SPR and closure report,
and (2) approximately 645 of the errors could be attributed

to design and 367 to coding as probable sources for these
errors. An explanation that was offered for 'this outcome was
that, in their collection of supporting data to uxplain software
error histories, poorly stated requirements or changing inter-

S Tt T P

o aea s

pretations of requirements were offered as reasons for diffi-
culty in developing various programs that were found to be
error-prone.,

As previously mentioned, error data for sample T was
collected throughout each of the four stayes of formal systeoms ;
testing. Illowever, no information is available as to the dates
for the data collection of the program structure data. 1If
the program structure data was collected pritr to the error
data collection, then the programming errors could be considered
as ilmmediately resulting from tiie variouz measured andéd un-
measured program characteristics. On the other hand, if the
program structure data collection was performed after modifi-
cations were made to these program structure variavles as a
direct result of correcting for errors found during the formal
test phases, then there exists a similar situation as was
discovered for the sample S programs. This problem, for both
samples, is one of several which raises questions as to the
validity of the data that was used for this study., It is
important that researchers are aware of sources of possible
invalidity in data collection or program selection. The
effects can then be considered in terms of the r-sults obtaihed
and the conclusions drawn from the study.
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2.2.4 Predictor Variables

A list and description of the 16 predictor variables
that were provided for the analysis of sample T programs is
presented in Table B-2 of Appendix B, Variables 18 through
31 were constructed during this study to investigate their
effectiveness in predicting error rate/program for this
sample. These variables will be further discussed in
Section 3.0.

Each of the 16 original predictor variables were
collected by means of a scanner program which could interro-
gate source code programs that were written in JOVIAL J4,

The only known linear combinations that existed among these

16 predictors we-a as follows: (1) Total Source (TS) was a
linear combination of variables Non-Executable Instructions
(NEX) and Executable Instructions (EX); and (2) Total Inter-
faces (Tl) was a linear combination of the two interface vari-
ables, Application Interfaces (AP) and System Interfaces (SYS).

Regarding a more detailed description or definition of
the software-related predictor variables, only a limited
amc unt of more specific information was available. This infor-
mation is as follows: four generic types of executable code
were arbitrarily defined:

I/0 =~ I/0 refers to JOVIAL defined and SYSTEM
defined input and output statements.
JOVIAL I/O statements include FORMIN,
FORMOUT, DECODE and ENCODE. SYSTEM DISC




I/0 includes 'SDAHA and its various entrances.

Examples of SYSTEM TAPE I/0 are 'CWRITE,
'WEOF and 'REWIND.

COMPUTATIONAL- These are statements expressing equations

containing arithmetic operators.

Example: AA = BB*CC**2/DD §$
DATA HANDLING- These statements effect a simple data
transfer (equality) from one variable to

another and are distinguished from compu-
tational statements,

Examples: XX=YY $, AA($BB+2, DD$) = 'PR $.
LOGICAL~- Logical gtatements establish branches in
the code and include the IF, IFEITH, ORIF,
FOR and GOTO SWITCH statements,

Also, more descriptive information relating to how the
Total Branches (BR) and Interface (AP,SYS) variables were
defined was provided. Total Branches (BR) was described as
including all possible logical branches, resulting from IF,

IFEITH, ORIF, and GOTO-SWITCH name statements, The BR variable

does not reflect the actual number of logical branches the

program will make when it executes, Program-to-program and

program-to-data base interface descriptions were described
as being available from system utility or construct programs,
To this could be added details of the individual interface
(e.g., number of arguments in the calling sequence), the type

of interface (applications, system, user, data base), and the
format cof the information passed.
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The two predictor variables, Programmer Rating (RAT)
and Workload (WKLD), were metrics that were constructed
to evaluate programmer performance with respect to (1) selected
programmer-specific criteria and (2) programmer assignment or
job-specific criteria. The evaluation was amde on only those
that had been exclusively developed by one of the two private
industry organizations who shared responsibility for the overall
software development effort. The evaluation was performed by'
the programmer's line management after the project was completed.
Table 2-5 presents the personnel evaluation parameters that
were used to develop the programmer rating and workload measures
relative to software quality, From these paraﬁeters, the
Programmer Rating variable (RAT) was constructed by simply sum-
ming the scores obtained on each of the knowledge, intelligence,
initiative, and responsibility categories. One final point to
consider is that many of the 172 programs for which RAT and
WKLD measures were availlable were developed jointly by two or
more (up to 15) programmers. For these programs, the RAT and
WKLD measures represent the averages obtained for these vari-
ables over each of the individual programmer's scores,

2.2,5 Characteristics of Sample Data

Subsystem statistics for sample T are presented in Table
2~-6, Clearly these subsystems are quite heterogeneous when
one considers the differences which exist across subsystems
with respect to the number of programs, average errors/programs,
and average error rate/program, One major commonality, however,
that was found over all subsystems was the high intercorrela-
tions which existed between Total Sourcco Instructions (TS)
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and the variable BR, LS, DATA, NEX, and EX. These correla-
tions are reported in Table 2~7, Since each of the variables
within this group was highly related to others by definition
(i.e,, TS+NEX + EX, and EX=BR + LS + DATA + other executable
statements appearing in the program), the high intercorrelations
ware not surprising, The fact that these intercorrelations

were consistently high and of similar magnitude across all
subsystems is an interesting finding, It is not known whether
this phenomenon can be explained by:

(1) the characteristics of the JOVIAL J4 programming
language, since these high correlations are being
observed not omly over eight heterogeneous sub-
systems but also over numerous dissimilar functions
that were being programmed, or

(2) by the use of the same basic set of programmers
to program similar functions over all subsystems,
or

(3) by the fact that this a universal finding, i.e.,
one which applies to other programming languages
as well,

In general, for all subsystems, each of the univarlate
frequency distributions was highly peaked and demonstrated
minimal to extreme positive skewness. The intercorrelations
between each of the predictors and errors ranged from low to
very high across all subasystems, Generally, these correlations
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were higher than those observed for the predictor variables
with errors for the sample § programs. Also, as in sample S, \

a significant nunber of programs were reported as error-free
(see Section 3.7).
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3.0 PRELIMINARY REVIEW AND ANALYSIS OF DATA SAMPLES

3.1 Selected Limitations of the Data

The purpose of this section is to briafly enumerate and
discuss selected limitations of the data in both samples that
could affect or influence the predictability of errors, and

resultantly could affect or limit the generalizability of
conclusions reached in this study.

Data Collection and Definition of Variables - It should
be clear from the preceding discussion of both data samples in
Section 2.0 that serious questions can be ralsed with respact
to (1) when the data for the predictor variables were collected
vis-a-vis the error data and (2) the limited usefulness of the
predictors' definitions and descriptions for aiding an under-
standing of how each variable maf uniquely influence or contri-
bute to programming errors. To be sure, the need exists for ’
future research projects to carefully identify and define the
variables to be analyzed, discuss why they were selected, and
identify what use is to be made of the data, prior to the actual
data collection. With the definitions presently available,
there is little possibility for any comparisons to be made
between the predictions of both samples, not to mention the
limited possibility for comparison of these predictors with
variables obtained from other projects in which programming
languages other than CENTRAN and JOVIAL-J4 have been used.

Classification and Definition of Errors - For both data

samples a complete classification and detailed definition of
programming error categories were either non-existent or
unavailable to be analyzed for the purposes of this study.




Clearly without thege error clasgifications and definitions

for each category, analysis is limited to an aggregate or gross
count of errors., Better predictions might very well result
from using total errors of a specific type as the dependent
variable,

Heterogeneity Within and Between Data Samples - From the
discussion presented in Section 2.0, it is apparent that the
software development environments, software testing conditions,
programming languages, project management methods, and the
command and control functions being programmed were different
in many respecta between the two data samplaes being analyzed,
Furthermore, as evidenced by the statistics presented in
Tables 2~4 and 2-6, there are differances in variability among
the three projects cf sample S and among the eight subsystems
of sample T. These differences are further indicative of the
functional differences that existed hetwaen each of the projects
and subsystems in the two samples, and the individual differ=-
ences that existad among the programmers responsible for the
software development effort. Unquestionably, these differences
or lack of homogeneity between and within the data samples will
rastrict the extent to which the prediction equation results
for a given set of program-observations can be compared to
othar sample observations.

Thoroughneas of Program Testing -~ For both data samples,
little is known about the thoroughness of testing of all the
783 programs being analyzed in this study, For that matter,
the prediction equations developed in this study are limited
in that they apply to ohsarved errors only., DNo information is
available as to the latent arrors, or those which might be

3-2




found at a later time as a result of more intensive testing

or operational usage of the programs, Most assuredly, given
the increasing manpower and costs in large~scale command and
control software maintenance, and the increasing attaention
being paid to the relationship betwaen thoroughness of testing
and software quality and reliability at the DOD software
management levael and in the research literature, valid and
reliable moasures of program testedness need to be developed
and applied to all ongoing and future software development
efforts.
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3.2 Preliminary Analysis Findings and Observations

Correlations Between Source Instructions and Other

Predictors - For both data samples many of the predictor
variables had modarate to high positive correlations with the
Source Instructions variable (i.e., X1 for sample S, and TS
for sample T). For example, for project M of sample S which
involved 395 of the total 534 programs being analyzed for this
sample, 30 of the 53 predictors had correlations which ranged
from .30 to .98. Similar correlations were also observed for
projacts B and P of this sample. For subsystem A of sample T
which had the largest number of program-observations (Nw5l)

of any subsystem, ll of the 15 predictors had correlations which

ranged from .37 to .99. There too, similar correlations were
observed over each of tha remaining subsystems, B thru H. 1In
fact the conslstency of some of these correlations for the BR,
LS, DATA, NEX, and EX variables over the eight subsystams was
reported earlier in Table 2-7, In general for both data samples,
many predictors were also correlated %o a similar degree with
other predictors besides Source Instructions. However none of
these predictors was corralated over the large number of vari-
ables with the same magnitude as was Source Instructions.

Generally, when many highly intercorrelated variables ére
being used for prediction purposes, serious mathematical prob=-
lems result (e.g., the matrix of intercorrelations among pre-
dictors may become singular), which yield an indeterminate
solution to the prediction equation. For this reason, many of
the variables in both samples having very high correlations
with Total Source Instructions were eliminated froh the analysis.,

3.4

T S P VP - |

RPN L. SN~ F Y



"

:

For those variables which remained; i.e., those that did
not correlate very highly with Source Instructions, it was
desirable to obtain an additional measure of their contribu-
tion (or correlation) to programming errors with the effect
of Total Source Instructions removed. This consideration leads
directly to the need to "normalize" the predictor variables.

Bagically, the effect of source instructions was to be
removed from each of the predictor variables by means of the
normalization procedure. Although several more involved compu-
tational procedures are available as alternatives for doing
this, it was decided to divide each predictor's value in a
given program by the number of Source Instructions for that
program,

As an end result of this normalizing procedure being
applied, (1) a net doubling cccurred to the number of predic-
tor variables that could be considered in any one prediction
equation for each sample, and (2) a new dependent variable ’
(errors/socurce instructions) was added to each program-observa=-
tion which is referred to as the error rate per program,

Error Rate and Length of Program - Once the normalization

procedure had been carried out and the correlations among all
variables were once again obtained, it was observed with interest
that the correlation of error rate (i.e., the normalized errors
per program variable) with ‘Source Instructions was negative,

and low to moderate in magnitude, over most of the samples to

be analyzed. Interpreting the correlations directly meant

that as the number of source instructions in a program increases,
the errors per 100 lines of code decreases, and vice-versa.
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In essence, for the programs in the two samples this suggested
that the shorter programs have higher error rates than the
longer programs. Nevertheless, when the relationship between
error rate and source instructions was actually graphed for
projects M, B, and P of sample S, as presented in Figure 3-1,
the reason for the low negative correlations became more

apparent,

These graphs show that, for each of the three projects,
as number of source instructions jncreases the error-rate
increases, reaching a maximum error-rate in the range of
200~400 source instructions. From that point on, the error-
rate decreases as number of gource instructions increases,
This phenomenon requires some explanation.

It is well-known that as the number of source instructions
increases, the numher of pessible paths through the program
usually increases and that this increcase is at a more rapid
rate than a linear one (perhaps not exponential, but more than
linear). To detect the same percentage of total errors in
two programs, the testing effort should 2:xercise approximately
the same percentage of total paths. Therefore, the amount of
testing to detect equal percentages of total errors should
increase at a rate faster than linearly. It is hypothesized
that such was not the case for these projects, and that the
negative correlation between length of program and error rate
is due to lack of thoroughness of testing. That is, the shorter
programs were more thoroughly tested than the longer ones, in
terms of having a higher percentage of their paths executed.
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It is of éourse possible that other explanations (or
hypotheses) would be better, such as, for these projects (includ-
ing both samples) the shorter programs were in fact more com-
plex, or that longer programs contain in general more repeti-
tive operations (thus more easily programmed), but it is
proposad here, as a result of evaluating the total analysis
effort, that the hypothesis of inadequate testing of the
longer programs is more likely to represent the actual sicuation.

Programs With Zero Reported Errors - Throughout most of the
sats of program samples that were to be analyzed, zero raported
errors were observed in long as well as short programs. Statis-
tics on these zero reported errors programs were reported
earlier in Table 2-4 for the projects of sample S and in
Table 2-6 for the subsystems of sample T. For the longer pro=-
grams having zero reported errors, some skepticism is warranted.
It could have been that programming errors went unreported
for these programs, or that the programs received very little
testing. For the shorter programs with zero errors, it was
congidered that they could actually be error free as reported.
However, given the earlier observed relationship between error
rate and source instructions as indicated by Figqure 3-1 and
the correlations that were obtained, it is suggested that at
least some of these programs underwent minimal testing.

It is believed then, that programs reported as error free
constitute a set of programs, some of which are actually error
free and some of which contain an unknown number of errors.
Further, those reportedly error free programs are more likely
to have more latent errors than those programs with some num-

3-8
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ber of errors reported. (The same reascning might also be
applied to those programs with only on¢ or two reported
errors; however, the line must be drawn somewhera).

Throughout the analysis for both errors and error rate,
results were obtained (l) leaving the zero error programs in
the analysis, and also (2) excluding these programs. Per- v
forming the analysis in two ways, it was possible to determine
whether an increase in the predictability of errors would
result by eliminating one source of ambiguity in the data.

At best, performing analysis in this way would be able to do
justice to any researchers who would contend that if error
prediction equations being developed are to be effective at
predicting errors, then all programs used to develop these
equations should have errors reported in them.




4.0 ANALYSIS METHOD AND PROCEDURE

4.1 Multiple Linear Regression Analysis

-1 PR

The method of analysis used in this study to predict
programming errors was that of multiple linear regression.
Using the model,

o T AL

[

the observed programming errors (Yi) were assumed to be
predictable from a linear combination of the program charac-
teric predictor variables (xl, xz, ooa xn). In (4.0),

bl’ b2’ . bn are the regression coefficients; i.e., the

} estimated weights for each of the predictors that will maxi-

1 mize the predictability of errors, a is the intercept constant,

am= ?i - (bli'u + bzzzi + oees + bni‘ni) (4.1)

i.a., the estimated value of Y, at the point where the regres-
sion hyper-plane crosses the Y axis, and Yi represents the
predicted or estimated value of errors for each individual
program module (i). The quantities ¥ and Zi are mean values
of the respective variahles.

The method used to determine the parameters of the re-
gression equation is to minimize the sum of squared deviations
of actual errors from predicted errors; i.e., minimize

2 2
S m Zei -ZEi - (a+blxli + bzxzi * e + bnxni) (4.2)

XA / (4.3)
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In (4.3) the value of S is referred to as the sum of
squares of deviations of the estimated value (Yi) of errors
from the observed value (Yi) of errors summed over all the
program modules in each sample or set of observations for
which errors are predicted. y

Generally when prediction equations such as represented - A ;
in (4.0) are being evaluated for their goodness of prediction, ’
two statistics, (1) the multiple correlation coefficient (R)
and (2) the sguared multiple correlation coefficient (Rz),
are used, The value of R has a range from 0 to 1 as indicated

in (4.4),

0 SRy.123,.n <! (4.4)

and can be interpreted as the actual correlation between the
linear combination of predictor variables and the observed
values of errors (Yi). The value of Rz also has a range from
0 to 1 and is a measure of the proportion or percentage of
variation in the dependent variable (Yi) that can be accounted
for or explained by the linear combination of predictors.

More specifically R2 can be reprasented by the ratio,

2 =Sy - 72 7 2
Ry.123...n jz(yi ¥ )//:821 - ¥) (4.5)

where ¥ is the mean or average value of the dependent variable
in the given sample being analyzed.

As more improved or better predictions are obtained, the
values of both R and R2 will approach a value of 1, Complete
lack of correlation (implying no predictability) results in an
R or R2 value of zero. Both statistics (R and Rz) will be
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presented for all prediction equations in this study., For the
purposes of this report, the goodness of prediction or what
could be termed the predictability of programming errors will
be discussed only in terms of Rz.

Predictability will be described in terms of being low,
moderate, or high in later sections of this report. These
categories are based on the authors' judgement and are used
for the descriptive purpose of comparing and contrasting the
regults of numerous error prodictions obtained in this study.

For those readers interested in a more thorough and
detailed discussion of regression analysis, texts by Draper
and Smith (1968) (3) and Kerlinger and Pedhazur (1973) (6)
are readable, cogently presented, and are highly recommended.

Although much more could be said here concerning multiple
ragression theory, practice, and procedures, the following two
points deserve special emphasis.

Multicollinearity Among Predictor Variables = In many
multiple regression procedures the computed values of a, bl'
bz, «ss and bn are directly obtained from matrices which con-
tain the intercorrelations among the predictor variables and
the correlations of the predictor variables with errors. If
the predictor variables are truly mathematically independent
(i.e., not correlated with each othaer), then the problem of
interpreting the final multiple regression equation becomes
simple and the interpretation is straightforward. However,
when the predictor variables are moderate to highly correlated
with each other (which is usually the case), then a clear and
explicit interpretation of the prediction equation becomes




comparatively much more difficult. When this situation
arises, then the problem of multicollinearity is said to exist
(Althauser, 1971 ; Gordon, 1968: Rama Sastry, 1970) (1, 5, 15).
As indicated in Sections 2,0 and 3.0, many of the variables

in both of our samples were moderately to highly correlated.
Necessarily then in the 'Results' saection of this report
(Section 6.Q), our interpretation of the predidpion aecquations
will consider interdependent variables.

ﬁumber of Predictor Variables and S&mpla Size - When the
number of pradictor variables available to study equals or
exceeds the number of program-obsarvations in the data sample,
then perfect prediction of the criterion error measure (errors
or error rate) will always raesult., Clearly for both data
samples, thare is a danger of encountering this problem. What
was needed then to deal with this problem was to apply some
analytical or automated statistical procedure to select the
most powerful set of predictoré for errors and error rate in

each of the data samples, Two procedures were used. The first

procedura invol#ed tha a priori elimination of predictor vari-
ables based on selectad operational and statistical criterion.
The criteria and the variables eliminated using these criteria
are discussed in Section 5.0. The second procedure involved
the use of a stepwise regression procedure that would enter,
remove, swap, or delete variables from the regression equation
based totally upon statistical criterion. This procedure will
be discusged in the following section,
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4,2 BMDP Stepwise Regression Procedure

The stepwise regression procedure selected to be used in
this study was the procedure, referred to as BMDP2R, made
available along with other statistical programs in the Bio-
medical Computer Program Package (BMDP) developed and distri-
buted by the Health Sciences Computing Facility (HSCF) at the
University of California, Los Angeles (UCLA). The HSCF
supports Biomedical computer analysis for the School of
Medicine at UCLA and is sponsored by a NIH Special Research
Resources Grant RR=3. Although the BMDP series of programs
has only been recently raleased (1975), it is based on an
entire series of programs that have had a history of program
revisioning, maintenance, modification, and testing that goes
back to 1961. The BMD program series is one of the most
widely used and highly reliable sets of statistical programs
that has yet been developed for general purpose applications.

Essentially, the BMDP2R procedure estimates the parameters

(a, bys Bys oen bn) of multiple linear regression equations

in a stepwise manner. Four stepping algorithms are available.
The algorithm selected for the current analysis is referred
to as an FSWAP procedure, which enters and removes predictor
variables based on an F-to-enter and a F-to-remove criterion
with a variable intarchange option. Without becoming too

detailed here, the FSWAP procedure works as follows. Initially,

the procedure selects the variable having the highest correla-
tion with the dependent variable. It then adds the variable
which has the next highest partial correlation with Y. After
this addition, it continues adding variables which increasae
the multiple correlation coefficient (R), and concurrently
swapping or exchanging variables not yet in the equation which
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increase the multiple R value., Finally after no additional
variables will increase the value of R, it then proceeds to
perform a backwards elimination, removing those variables
which have the least effect on the goodness of prediction.
For additional informaticn on this program, the reader should
consult the actual BMDP publication manual (Dixon, 1975)

(2). (All computer runs using the BMDP2R program werae per-
formed on an IBM 370/168 computer.)
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5.0 DEVELOPMENT OF ERROR PREDICTION EQUATIONS

The purpose of this section is to discuss various opera-
tional and analytical considerations and decisions that were
made which pertain to the development of the error prediction
equations that were obtained for this study.

IO 1YL

5.1 Normalization of Pradictor Variables

For both data samples, various tranaformations »f selected
variables were required. For example, for each program in
both sample § and sample T, in order to normalize the original
predictor variable values, sach value was multiplied by a
constant of 100 and divided by the total number of source
instructions for that particular program (i.e., either Xl
for sample S programs or TS for sample T programs). This
normalization procedure thus rasulted in a completely new
set of predictor variables, in addition to the original aset
of predictors, in which each normalized variable could Le
interpreted as a unique measure of the original predictor
variable given that the affect of thae length of the program
had been removed from it., In effect this procedure made each
of the original variables comparable with raespect to a "per 100
lines of source code" interpretation.

It is interesting to note that this particular qormali-
zation procedure did not completely eliminate the linear
effect of total source instructions from all of the original
variablas. For most of the normalized variables, the corre-
lation coefficients with Total Source Instructions were nega-
tive but relatively low or close to zero in magnitude. A faw
of the normalized variables had non-zero correlations with Total

5-1
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Source Instructiong which ranged from =,50 to +.40 in

sample S and from -,69 to +.72 in sample T. Clearly then,

this normalization procedure is not the most effective means
for eliminating the effect of Source Instructions from each of
the predictor variables., In actuality, the most statistically -
consistent and accurate procedure for aeliminating the linear
effect 0f one variable from one or a set of other variables

is through partial correlation.

In the case of this analysis efforxt, use of the partial . ?
correlation procedure could have bean alternatively employed
by first predicting each original variable individually as a : 3
function of Total Source Instructions, and then using only the ’
residual values (i.e., Yi-Y ) as the values for the normalized
variables that were employed in the prediction egquations. 1If
this procedure had been utilized, the resulting matrix of
intercorrelations among all the normalized variables would in
fact be a matrix of partial correlations; that is, the corre-
lation between the various pairs of predictor variables with
the linear effect of Total Source Instructions eliminated from
both variables., The matrix of intercorrelations between each
of the normalized variables and the original variasbles including
the dependent variable, errors, would actually be a matrix of
semi-partial correlations; i.e,, the correlations between each
of the normalized variables and the original variables including 5
the dependent variable with the linear effect of fotal Source ‘
Instructions eliminated from only the normalized variables. ;

PAPTUDIS, -E SRR E gy gt o3
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Clearly, one implication of using this alternate procedure 1
is that for the normalized variables, an antirely new data base
must be constructed wherain each residual value must first be i
obtained from a simple linear regression procedure, automated,
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and then entered in the data base. To be sure, constructing
normalized variables using this procedure would indeed be

time consuming and would require the availability of special-
purpose software support programs that could minimize the amount
of manual processing that would be required. Due to time
constraints, this procedure was not followed,

5.2 Other Transformations to Predictor Variables

In addition to the normalization that was applied to the
predictor variables for both samples, the only other transfor-
mations that were used were applied against several predictors
of sample T. Since all data from sample T had been obtained
in manual form for this study, all data values had to be
racorded, keypunched, verified, and then automated. Most pre-
dictor variables of sample 7 were whole numbers, whareas the
Loop Complexity (LL), If Complexity (IF), Programmer Rating
(RAT) , and Programmer Workload (WKLD) variables were whole
numbers with one decimal valua., In addition, Comments (COM)
and Programmer Rating were originally represented as negative
values, In order to simplify and expedite the manual to auto-
mated process for this data, the values of LL, IF, RAT, and WKLD
were multiplied by a value of 10 in order to represent them as
whole numbers, The values of COM and RAT were multiplied by
-1l and -10, respectively, in order to eliminate the negative
sign from both variables and represent the RAT predictor
values as whole numbers.

Additionally, using the RAT and WKLD variables of sample T,
a naw predictor variable was constructed which took tha form of
RAT/WKLD. It was hypothesized that this new variable was
linearly related to errors and as such should be included as

5-3




a candidate variable for consideration by the stepwise
regression procedure. This newly constructed value was multi-
plied by a constant of 100 in order to represent it as a whole
number throughout its range of valuas.
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5.3 Combining Predictors In The Egquations

As a direct result of the normalization procedure, 107
distinct variables versus the original 54 variables of sample S
were considered as predictors of errors and error rate, For ;
sample T a total of 30 as opposed to the original 16 variables
were candidate predictors. Although the BMDP2R program is
a stepwise procedure that selects the optimal predictors from
among all those available to be entered, it is desirable to
limit the number of predictors it would have to consider for
any given set of predictions. This was desired in order to
maximize the chance that as many predictors as possible could
be considered in the regression equation simultaneously, and
then eliminated one at a time using the backwards elimination
procedure if the variable actually had no significant effect
or, the predictability of the dependent variable. In addition,
the predictors available for selection by the regression pro-
cedure are limited because the total number of predictors
should not exceed the sample size. 1In addition, reducing the
number of predictors reduces the computer time required to
generate each set of predictions,

For the sample T subsystems, allowing all 3N or less vari-
ables to be available for selection in the equation presented

no major diftisulty. Due tu the o priori eliminaticon of pre-
dictors that was carried out for sample T (to be discussed in
Section 5.6), no more than 23 variables were ever allowed to
be considered fecr selection. Essentially then for each sub-
system of sample T, errors and error rate were predicted using
the combination of variables as follows:



Errors/program = f{Program Structure + Programmer Variables)
Errors/program = f(Program Structure Variables only)

Error rate/program = f(Program Structure + Programmer
Variables)

Error rate/program = f(Program Structure Variables only)

The program structure variables for these predictions represen-
ted the combination of both the unnormalized (TS, LL, IF, BR,
+ve.y COM} and normalized (LL/TS, IF/TS, BR/TS,..., COM/TS)
predictor variables. Additionally, prediction equations were
obtained first using the program observations available in

each subsystem and then second, using only the remaining
program-observations left after the zero reported error programs
had been deleted from the analysis.

For the three projects of sample S, the 107 predictors were
analyzed in two different sets each, for errors and error rate.
These sets of predictors were combined as follows:

Errors/program = £ (Unnormalized Variables)
Errors/program = f (SI + Normalized Variables)
Error rate/program = f(Unnormalized Variables)
Error rate/program = £(SI + Normalized Variables)

In these predictions SI represents the Source Instructions (SI)
variable X1; the unnormalized variables are the predictors
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Xl, X2, ..., X54; and the normalized variables are the
predictors X56, X57, ..., X107. Here, as with sample T,

prediction equations were obtained both using all observations
and using only the observations remaining after the zero

reported error programs were deleted.

In any of these equations, due to the a priori variable
elimination procedure that was applied, no more than 45 pre-
dictors per regression run were ever available to be selected
for the sample S prediction equations.
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5.4 Selection of Regression Coefficients to be Reported

After having made the necessary transformations (i.e.,
normalization and other transformations required) to the data
and identifying how the predictors were to be combined in the
analysis, one other issue remained. In essence, there were
sets of predictors in both samples that would be equally or
unequally weighted and non-comparable in a regression analysis.
This follows from the facts that 1) the normalized variables
had different units of measurement as compared with the unnorm-
alized variables, and 2) for the predictors used in sample
T, the program structure and programmer variables wera not
comparable, being derived from two distinct measurement domains.
Thus, using predictors that had unegqual or non-comparable units
of measurement would result in making more difficult any rela-
tive comparisons among the raw regression coefficients computed
for the predictors in the equation. 1In order to resolve this
problem, it was decided that the standardized partial regression
coefficients (Kerlinger and Pedhazur, 1973, p. 64) (8) would be
reported for all predictions.




5.5 Regression Analysis Using Standardized Form of the

Prediction Eg&ation

In practice the standardized partial reqressioh coefficients
are referred to as B (beta) coefficients or beta weights as
compared to the b coefficients as represented in eguation (4.0).
The beta weights are the regression coefficients that result
when the raw data is transformed (i.e., standardized in this
case) into standard score form prior to the analysis. For
example, the standard score for the ith observation on a
variable (xi) is computed as follows:

Zi L xi - i‘i (500)
81

where ii and s, are the mean and standard deviation, respec-

tively, for that variable. When all the predictor and depen-

dent variables are standardized according to this procedure,
the standardized variables all have a mean of 0 (i.e., Ei = Q)
and a standard deviation of 1 (i.e., s, = l). Essentially
then, the variability in each variable is made comparable

with respect to the standard deviation do the common  unit

of measurement over all variables; thuas, the B coefficients

in the standard score form of the regression equation are

also comparable. Although the raw data had not been stand-
ardized, the BMDP2R regression procedure computes the beta
coefficients (in addition to the raw b coefficients).

Since the standard score form of the regression equation
was being reported in this analysis, the linear regression
model and other statistical formula became more easily interpre-
ted in terms of the beta coefficients, For example, the
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linear model now took the form,

/

Zyi - Blzli + Bzzu + B3Z3i + 0. ¥ anni (5.1)
and the multiple R, Rz, and standard error of estimate s
could be computed as follows:
Ry.123...n 1~/Blryl + Bzry2 + B3ry3 + ees + Bnryn (5.2)
R3.123...n - Blryl + Bzry2 + B3ry3 + 4.0 #+ Bnryn (5.3)
5 = = RZ 123...m (5.4)

wiare the ryi values are the correlations of each predictor (i)
with the dependent variable (y).

Furthermore, since the results of any correlational
analysis are the same whether the analysis started with the
raw data values or the standard score values, computational
formula are available (Kerlinger and Pedhazur, 1973, pp. 61-62)
(8) which easily allow the computation of the value of the b
coefficients and the a intercept in equation (4.0) using the
beta coefficients obtained in this analysis. For e::ample,
the raw regression coefficients bj and the a intercept can be
directly computed using the following formula:

b, = B ;1) (5.5)




ﬂnd a=s Y - B‘(g-f) (2‘1) - B{Eﬁ) (fn) = eses B%) ‘S(-n) (5.6)
a=9 —an(gjl) (X J) (5.7)

where sy and sj are the standard deviations of the dependent
(v) and predictor variables (j), respectively, and Y and Xj are
the means for the dependent and predictor variables, respec-

tively.
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5.6 A Priori Elimination of Predictor Variables

Certain predictor variables in both data samples were

eliminated from any further consideration in the prediction
analysis, prior to their actual consideration for selection

by the BMDP2R regression procedure. In general, most of the
predictors that were eliminated at this early stage of analysis
were done so in order to reduce the incidence of multi-
collinearity that exists among the predictors. Other variables
were eliminated primarily because they had zero values through-
out the data sample. Table C-l in Appendix C lists all the

107 predictors of errors and error rate in sample S and identi-
fies each of the variables that were either eliminated a priori
from the analysis, or made available to be considered for
selection in the regression procedure. The criteria used to
eliminate these variables prior to the regression analysis are
enumerated at the end of this table. PFor the 30 predictors

of sample T, Tables C=2 and C-3 in Appendix C provide similar
information for the predictors of errors/program and errou
rate/program, respectively.
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6.0 ERROR PREDICTION EQUATIONS: RESULTS AND DISCUSSION

The purpose of this section is to present and discuss
the actual prediction equation results that were cbtained
when predicting errors/program and error rate/program, re-
spectively, for each of the three projects of sample S
and each of the eight subsystems of sample T. Preliminary
to this presentation of results for each sample, an overall
general summary of results with discussion is provided,

6.1 Results Summary

The following are the major results obtained regarding
the pradictability of errors and error rate over both of
the samples that were analyzed.

Errors/Program

° For sample T, where the error data had been collacted

throughout the validation, acceptance, integration,

and operational testing phases of software system
development, errors/program were found to be moderately
to highly predictable. This predictability was far
from perfect with 76% to 93% of the variance accounted
for when the errors/program were predicted from a
linear combination of program structure variables.

° For sample S, where the error data had been collected
only during the test and integration phase of software
system development, errors/program were found to be
less consistently predictable. The percent of variance
accounted for in this sample was 59% to 90X.
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] Predictor variables which reflected length of program
were generally found to be the best single predictors
of errors/program. However, other program structure-~
complexity variables together in combination with
length of program variables contributed significantly
to the predictability of errors/program.

Error Rate/Program

() For sample T, error rate/program was found to be less
predictable in general than arrors/program, with 59% to
85% of the variance accounted for, when predicted from
a linear combination of program structure variables,

° For sample S, the predictability of error rate/program
was generally, lower, with 34% to 9u4% of the variance
accounted for,

° Pradictor variables which were measures of the number
of program interfaces per 100 lines of source code
ware generally found to be the best single predictors
of error rate/program, However, other normalized
measures of program complexity together in combination
with program interfaces per 100 lines of source code,
contributed significantly to the predictabiiity of
error rate/program.
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° In general, the predictor variables which were moat
frequently selected by the stepwise regression pro=-
cedure as contributing significantly to the predicta-
bility of error rate/program were the normalized
variables.

] Analysis of the error rate/program measure for those
data samples having a high percentage of error-freas
programs leads to a clear indication of the lack of
thoroughness of testing in these reportedly error
free programs.

6.2 Discussion

Clearly, the results obtained from the analysis of aerrors
and error rate are not surprising. The facts that (1) length of
program and the number of program interfaces per 100 lines of
source code were found to be the best single pradictors for
errors and error rate, respectively, and that (2) program com-
plexity variables contributed significantly to the predictability
of each dependent variable, are findings that not only appeal to
experience and intuitive judgement about how these predictor
variables may be related to measures of programminy errors,
but alsoc are findings which are supported by other empirical
studies concerned with software reliability (Mitchell et al.,
1976; Thayer et al., 1976, Okimoto, 1975) (11, 13, 14),

For example, consider the following hypotheses, which
logically follow from our knowledge and experience of program-
ming, which concern the effect vf increasing program length
and program complexity on the total number of programming errors
in the program,
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Hypothesis l: As length of program increases, program complexity
increases, and the number of latent errors in
the program increases linearly as a function of
both.

Hypothesis 2: As length of program increases, program complexity _
increases, and the number of probable or latent !

errors in the program increases at an exponential
rate,

RPN T

Hypothesis 3: As lungth of program increases, program complexity
increases; redundancy in the use of similar
software functions and instructions in the
program also increases, resulting in the number
of latent errors in the program increasing up
to a point with no significant increase there=-
after with increasing program length,

Each of these three hypotheses are graphically depicted in
Figure 6=-1.

Hypothaesis 1, which in essence is the basic assumption of
the multiple linear regression model used in this analysis,
can generally be accepted as one explanation for the high degree
of predictability obtained when predicting errors/program in
this study. However, hypotheses 2 and 3 cannot be rejected
by this analysis. This is clear for several reasons:

(1) the model investigated by this analysis was a linear
model, and not an exponential or curvilinear model
as are suggested by hypotheses 2 and 3, regspectively;
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(2) the linear model did not yield perfect predictability
of errors over each of the samples that were analyzed;
and

(3) the numerous program structure and complexity metrics
that were used as predictor variables in the study
would possibly require re-evaluation or re-formulation,
with the chance that some variables would be ex-
cluded and new ones included, in order to use them
to appropriately investigate hypotheses 2 and 3,

With respect to the finding that program complexity
meagures and the number of program interfaces contributed
significantly to the predictability of error rate, studies by
Okimoto and Thayer (13, 1l84), are of interest. Okimoto found in
a survey of approximataly 60 systems programmers that when they
were asked to rank order the ten most important facters con-
tributing to error-proneness in programs, poorly defined inter=~
faces was ranked as the highest and most Important factor.
Other factors of importance that were included in this list of
contributors to error-proneness were (l) poor/incomplete testing
(ranked 3xd), (2) complex function/logic (ranked 8th), and
(3) large modules (ranked 1l0th).

In the Thayer et al. study, among the many things that
were presented was a brief analysis of factors which contributed
to the difficulty of developing over 200 command and control
programs, [Each program was rated according to five categories
of difficulty: difficulty to design, code, implement, checkout,
and document, These ratings were then summed to obtain the
overall difficulty rating for each program. Of particular

interest were the major reasons given for the difficult to
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develop programs: complex logic, core loading problems, and
data interfaces., A fourth reason, changes in interpretation
of poorly stated requirements, which adds to complexity and
difficulty in program development was also given.
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6.3 Sample S Results

6.3.1 Errors/Program = f(Unnormalized Variakbles)

The prediction equation results for both five and ten
predictor variables, when predicting errors/program from a
linear combination of the unnormalized variables for each
project of sample S, are presented in Tables 6-1 thru 6-5,.
These tables report

(1) the standard partial regression coefficients
(i.e., the beta coefficients, not the raw regression
coefficients) for each predictor,

(2) the correlation of each predictor with errors,

(3) the highest value of R and R2 obtained for the
maximum number of predictors entered in the
equation by the regression procedure, and

(4) the analysis of variance tables for both five
and ten predictor regression equations.

Prediction equation results for projects !t and B where zero
errors were deleted from the analysis are reported in

Tables 6-2 and 6-4, respectively. Additionally, Tablas 6-6
and 6-7 are included here to summarize the prediction results
obtained for both five and ten predictors over all regression
equations that were developed using the unnormalized variables
as predictors of errors. For projects !, B, and P, a total of
45, 43, and 45 predictor variibles, respectively, were available




TABLE 6-1. PROJECT M,
ERRORS /PROGRAM = £{UNNORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

2 py.A 25CMAX, )
MULTIPLE R, 717 .768 797
MULTIPLE R J51b .589 .636
STD. ERROR OF ESTIMATE 7.449 6.892 6.621
VARTABLES (X) COEFFICIENTS Tyy
X1 SOQURCE [NSTRUCTIONS ~ma  e1,28§ +563
X2 ENTRY POINTS - .175 - ,146 150
X4 USING INSTRUCTIONS .191 . 290 .507
X9 CALLS/LINKS - 105 374
X12 EQUATE S$TATEMENTS - .181 - .237 .362
X14 LOGICAL CONNECTORS -, - ,131 .268
X15 COND!TIONAL JUMPS - 673 . 593
X16 FUNCTIONS -—— . 182 «515
x2( LOCK MACROQS . 196 - 309
X37 UNDEFINED VARIABLES 734 712 NI
X54 §1 X AVG. NO. OPERATORS/ - MY .598

ARITHMETIC INSTR.

ANALYSIS OF VARIANCE

NG, SUM OF ME AN
PREDICTORS SQUARES OF  SQUARE F P
5 REGRESSION 22794.547 5 4558,906  82.157 <.0d! '
RES1DUAL 21535.109 3184 55,489
ig REGRESSION 26140.555 17 2614.955  55.U35 «¢.0fl
RESIDUAL 18239.102 384 47.497
TOTAL 44379.663 394

¥ BEST SINGLE PREDICTOR




TABLE 6~2. PROJECT M,

ERRORS/PROGRAM = Z(UNNORMALIZED VARIABLES),

ZERO ERRORS DELETED

VARIABLES IN PREDICTION EQUATION

¥

5 hy ZUCMAX, D
MULTIPLE R, 695 «755 791
MULTIPLE R 483 «571 528
STD. ERROR OF ESTIMATE 8.21% 7.552 7.228
VARTABLES (X) | COEFFICIENTS Tyy

X1 SOURCE INSTRUCTIONS -——— = ,92% <534
X2 ENTRY POINTS - 192 - 148 W 115
Xl USING INSTRUCTIONS 74 .2813 LU56
%12 EQUATE STATEMENTS - 183 - 227 .355
X13 COMMENTED INSTRUCTIONS - 139 .353
Xx15 CONDITIONAL JUMPS - .659 .584
X16 FUNCTIONS - .238 Jhu6%
X2@ LOCK MACROS 104 - 294
%37 UNDEFINED VARIABLES . 738 Bu7 Lb2un
X42 NON-NESTED DO LOOPS -—— .158 L6452
X53 INSTR,, 6TH LEVEL OR LOWER, - g2 Y'Y
DO LOOPS
ANALYS1S OF VARIANCE

NO. 5UM OF MEAN
PRED1CTORS SQUARES DF  SQUARE F '
5 REGRESSION 18866.531 5 3773.346 55.919 <.9p1

RESTDUAL 29175.9902 299 67.478
1 REGRESSION  22274.613 1y 2227.,461 39,4055 .04l

RES ! DUAL 16767.816 294 57.633

TOTAL 39442, 434 384
H*BEST SINGLE PREDICTOR
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TABLE 6-3. PROUECT 8,
ERRORS/PROGRAM = E(UNNORMALIZED VARIABLES)

YARIABLES I[N PREDICTION EQUATION

5 hi! 19 CMAX
MULTIPLE R, .812 .853 .886
MULTIPLE R .66 V727 .785
STD. ERROR OF ESTIMATE 3.615  3.322 3,11y
VARIABLES (X) COEFFICIENTS Tyy
X4  USING INSTRUCTIONS -—- . 205 436
X3  UNCONDITIONAL JUMPS --- 172 (294
X15 CONDITIOMAL JUMPS - Lbb3 - 557 .532
X17 SCALING/ROUNDING OPNS, 211 V219 .589
X22 ADDRESS VARIAHLES --- L 219 .319
X28 FIXED POINT VARIABLES FREQ. --- (197 4938
X35 REGISTER VARIABLES --- - 204 b9
X37 UNDEFINED VARIABLES 631 (588 678
X4g INSTR.,, IND LEVEL DO LOOP$ V305 V313 .668
= X53 INSTR,, 6TH LEVEL OR LOWER . 288 2y .565
DO _LOOPS
ANALYSIS OF VARIANCE
NG, SUM OF MEAN
PREDICTORS ' SQUARES  DF  SQUARE F P
5 REGRESSI0H  2433,154 5 496,631 38,000 ¢ 301
RES [DUAL 1280,795 95 13,169
n REGRESSION 2737.61. I 273,761 24,836 <, 0L
RESIOUAL 127,329 93 11.'3%
TOTAL 3763,949 143
* BEST SINGLE PREDICTOR
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1 TABLE 6-4. PROJECT B,
" ERRORS /PROGRAM = £(UNNORMALIZED VARIABLES),
ZERO ERRORS DELETED

VARIABLES IN PREDICTION EQUATION

4 5 pY LuCMAX )

3 MULTIPLE R, B3b .893 .919

3 MULTIPLE R 595 797 . 845

' STD. ERROR OF ESTIMATE 3,418 2,869 2,572

: VARTABLES (X) COEFFICIENTS Luy

b

3 X4  USING INSTRUCTIONS -—- . 294 658

X6 LABELED INSTRUCTIONS “-s 275 Juu7

3 X1l USER MACROS . --- Lu31 Ll

9 X15 CONDITIONAL JUMPS - .h93 - L3135 V578

; X18 SHORT DO LOOPS - - Ld94 BN
k. X27 FIXED POINT VARIABLES Ji54 . 226 . 333

3 X37 UNDEFINED VARIABLES .h9s AN 638
p X49 INSTR., 2ND LEVEL DO LOOPS 35 L4682 (688
3 X53 INSTR.,, BTH LEVEL OR LOWER L3559 474 594 ;
] DO LOUPS ;
: X54 S1 X AVG. NO. OPERATORS/ ---  =1.856 .64

i ARITHMETIC INSTR. |

AMALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SAUARES bF SQUARE F IS
5 REGRESSION  2371.739 5 L7u, 348 W, 602 ¢ ¥l
_ RESTDUAL 1739.876 89 11,683
] 1 REGRESSION 272¢.19¢ 1 172,919 13,051 ¢l
: RES IDUAL 641,336 44 8,239
TOTAL 511,526 Y

“BEST SINGLE PREDICTOR
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TABLE 6-5. PROJECT P, g,)
ERRORS/PROGRAM = f(UNNORMALIZED VARJATLES)

VARIABLES IN PREDICTION EQUATION i
. 5 uw MAX ;

MULTIPLE R, AR LT .946 .988 .
MULTIPLE R .78%" .895 977
STD, ERROR OF ESTIMATE 2.613 2.822 1,134
X
VARTABLES (X) COEFFICIENTS Ty '
X4 USTHG INSTRUCTIONS == - LUBS 352
X5 COMMENT STATEMENMTS 317 752 .59
X8 UNCONDITIONAL JUMPS .743 LSub L BBuH j
X17 SCALIMG/ROUNDING OPNS, - - ,176 - JJ24 :
%23 ADDRESS VARIABLE FREQ, - 377 - ,386 L1638
X28 FIXED POINT VARIABLE FREQ, J324 604 262
X37 UNDEFINED VARIABLES - .u36 567 i
X42 NON-NESTED DO LOOPS aee - .386 179 A
X47 DO LOOPS, 6TH LEVEL OR LOWER  ,335 --- L3045 i
X51 INSTR,, 4TH LEVEL DO LOOPS “a- = 370 J24
X531 INSTR., 6TH LEVEL OR LOWER - 612 L34l
DO LOOPS {
]
[
;
AMALYS1S OF VARIANCE :
NG, SUM OF NEAT f
PREDICTORS SQUARES DF SUARE F b .
. o |
5 REGRESSION 737.633 S 1u7.527 21,612 < i1
RESTDUAL 197.962 29 6.826
1y REGRESSION 337.431 L 33,743 20876 ¢t i
RESIDUAL 38,165 24 4, Jog i
TOTAL 935.596  3u i
* BEST SINGLE PREDICTOR i
i
]
'1
@
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TABLE 6-7, TEN PREDICTOR SUMMARY, E
ERRORS /PROGRAM = ECUMNORMALIZED VARTABLES) -

VAR ABLE
RIABLES a M 8

REGRESSION COEFFICIENTS

sy - .ugs

X4  USING INSTRUCTIONS 290 .283 . 245 .2
) X37 UNDEFINED VARIABLES J712% B4z 588" 743 L4386
3 X15 COND!TIONAL JUMPS .63 .659 - ,557 =~ ,335
-3 X53 INSTR,, 6TH LEVLL DU LOOPS 12 20 WAk 642
1 X1 SOURCE INSTRUCTIONS -1,288 = ,929 ]
- X2 ENTRY POINTS - b6 - 148 1
] X3 UNCONDIT!QOMAL JuMPs 172 T
A12 EQUATE STATEMENTS - 237 - 227
3 X17 SCALING/ROUMDING OPNS. . 219 - 176
X23 FIXED PT, YAR, FREQ. .197 63 9
X42 NON-HESTED DO LOOPS J158 - 336 3
X49 INSTR,, 2ND LEVEL DO LOOPS .313 NLYAL i
- X54 S1 X AVG. NO, OPERATORS/ .61 ~1.if56 9
E ARITHMETIC INSTR. k
3 CORRELATION STATISTICS K
] S| ERRORS V563 V530 N 658 593
Ty g L8879 872 L3959 J727 V337 f
‘g,ennons 645 L5624 673 J6E8 JHGY
%% ERRORS N .389 OGS 473 TS
PREDICTION SUMMARY
R, JTHG V755 353 L43 LY
R© N .571 L7177 1z . 895

BALL OBSERVATIONS USED
B2£R0 ERRORS DELETED )

HAEST SINGLE PRFN[NTNR




to be automatically entered in the prediction equation (see
Table C-1, Appendix C).

Initial observation of these results, particularly the
R2 values as reported in Tables 6-6 and 6-7, indicates that
{ (1) for all sample S projects the increase in Rz; i.e., the
' percent of variance accounted for when predicting errors,
shows a moderate increase when ten predictors are used as
opposed to when only five are used; and (2) the predictability
of errors ranges from moderate for project M (R2 = ,589) to }
high for project P (R2 = _B95). One can also observe (see
Tables 6~1 thru 6=5) that the variables selected for the five g
predictor solution are predictors which generally appear again
i in the ten predictor solution, after five different predictors
' have been entered. |

Clearly the predictability of errors in sample S is not
congistently high over each project. Two predictors however,
Using Instructions and Undefined Variables, do appear con-
sistently in each of the ten predictor equations ifor each
project. Other variables as indicated in Table 6-~7 do appear
less consistently either for two or more of the prediction
equations that were developed, or for at least two of the pro-
jects of sample 8. The fact that variables may appear con-
sistently over two or more projects, however, does not necessarily
mean that they are the most important variables from a prediction
viewpoint.

The best single predictor of errors in each project is
evaluated by its correlation with errors and not its beta
coefficient in the regression equations. For projects M and

B, Undefined Variables was the best single predictor of errors.




For project P the besat single predictor was the number of
Unconditional Jumps in the program. However, in Table 6-7
when one examines the percent of variance in'errors explained
by the best single predictor (designated ‘srf,errors)

versus the percent of variance explained by the best single
predictor plus other program complexity variables (i.e.,
Rz), it is observed that the other program complexity variables
selected by the regression procedure are significantly con-
tributing to the predictability of errors over and above that
which can be predicted only by the best single predictor in
any of the projects.

One additional point is important enough to mention
here. In Table 6~7 the correlation statistics are reported
for the correlations between the best single predictors and
Source Instructions (SI). In general, all of these correla=-
tion coefficients are moderate to high with the exception of
the correlation of project P's best single predictor, Uncon-
ditional Jumps, with SI, This ¢learly shows that each best
single predictor is itself reflecting length of program plus
some contribution to the prediction of errors which is unique to
the variable itself. In essence then, given that these best
single predictors had not been used, source instructions by
itself could be used to predict errors almost as well as each
best single predictor.

With respect to error predictability, wher zero errors
are left in or taken out of the data samples (see Tables 6-1
thru 6-4), predictability of errors increases appreciably
(from .73 to .80) for project B, but no change of any
statistical significance (a decrease from .59 to .57)

occurs for project M, Although only nine zero error observations
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waere deleted from project B's data sample, this deletion was
sufficient to cause changes in the correlations among pre-
dictors and between each of the predictors and errors, such
that an almost completely different prediction equation was
produced, wherein only three of the ten original predictors
were reselected., For project !4, 90 zero error observations
were deleted and seven out of ten original predictors in the

regression equation using all observations (i.e., 395) stayed
in the equation; however, with sliphtly different coeffients.

Several explanations for these results can be suggested
at this time. First, as earlier hypothesized in Section 3.0,
programs with zero reported errors are programs that have not
been thoroughly tested and contain latent errors. Zero reported
errors in these cases are actually under-estimates of the
total errors in the program, and if these programs are used
along with programs that have errors reported in them for error
prediction purposes, then estimates of error predictability;
i.e., values of Rz, will be biased downward. This is in fact

what was observed for project B,

On the other hand, for project M, since the change in R2

was 80 slight (i.e., - .02) and since seven of the ten original
predictors raemained in the cquation, this suggests the possi-
bility that the 90 zero crrcr programs that were deleted might
have been the shorter programs which had only a limited amount
of variability in their predictor variables. In other words,
predictor variables wnich may have limited variability to con-
tribute to the prediction of errors, when eliminated from the
analysis, do not significantly change or affect the results.
However, a validation of this suggested hypothesis rfor the 90

6-18




error free programs of project M ¢an only be attempted by
a complete analysis of these programs, which was not the
intent or purpose of this study.

Interpreting the regression equations presented in
Tables 6-1 to 6-5 presents some difficulty. Therae are several
reasons for this. One basic reason is that beyond the descrip-
tion of each variable that is provided in Table B-1l, there is
no more definitive understanding of what each variable is
measuring, not to mentiun how combinations of these variables
should conceptually interact to influence errors in programs,
One predictor variable that would stand as an exception for
which an interpretation could be given in this case is
X5, Comment Statements, Comment Statements appears in 7able 6-5

s

as a predictor with positive coefficient for both the five and

ten predictor regression equations for project P, One would ;
initially expect that since comment statenents are not execut- f
able, they cannot contribute to errors in programs. There ;

is no disagreement with this explanation. Illowever, one
possible explanation for this variable appearing in the equa-
tions for project P could be that these programs may have had
a comparatively larger number of comment statements in them
relative to programs of project M and B. As such, this in=-
creased the readability of the programs, which resulted in
more aerrors being found because they weire more easily detected.

An additional reason why no straight-forward interpretation
of the regression equations can be attempted is that each of
the predictors that were selected were usually found to be )
correlated with other variables in the equation. This was
particularly evident for the results presented in Table 6-1
for project M. For example, one might ask the reason for the
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negative beta coefficients for variable X1, Source Instruc-
tions, when it is reported as being positively correlated with
errors. Statistically, there is an explanation for the large
negative weight being compated for Source Instructions. Other
predictors, particularly those that had entered the equation
prior to Source Instructions, were moderately to highly corre-
lated with Source Instructions, The correlation coefficients

of each of the predictors with Source Instructions is reported
below:

i, Bl 1 AT C i

PPy

X2 Xt X9 X12 X1l4 X15 X1l6 X37 X54 k
. 352 .53% ,627 .633 425 ,910 646 .880 .976

After the first variable had entered the equation (i.e.,
variable X37, the best single predictor of errors), the partial
correlation of Source Instructions with errors was very close teo
zero. As such, when Source Instructions entered the eguation

which was at step 7 in the regression procedure, it contributed
"
to the predictability of errors (i.e., R") by suppressing the

affect of Source Instructions from other variables that had
already been entered in the equation. This then is the rea-

son for the large negative weight being computed for Source
Instructions. By suppressing or taking out this effect, the
predictive power ol the other variables wan ineveasod, dan was
evidenced by positive changes in these predictor's coefficients.
In essence than variable X1 is functioning as a suppressor
variable in the equation of Table 6-1. Suppressor variables

are quite common in the social sciences and in other areas of
study wherein measurement tools are either unavailable or have
not heen daeveloped for providing unique and independent

measures of predictor variables for data collection and analysis
purposes. (Suppressor variables generally appeared throuyghout
the results for both samples S and T). For a more detailad

discussion of suppressor variables the reader siiould consult

6-20
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the following references (McNemar, 1962; Van de Geerz, 1971;
Harris, 1975) (6, 10, 1l6).

Finally, when there is a mcderate or greater degree of
multicollinearity among the predictors in the regression equation,
making an assessment of the relative importance of the indepen-
dent variables for predicting errors is not readily accomplished
by ingpecting only the beta coefficient for a given predictor
(Ferguson, p. 402) (4). For example, with two predictors the
value of R2 can be shown to be equal to

2 2 2 ,
R® = B)" + B, + ZBlBZrlz . (6.0)

In this case the predicted variance is comprised of three additive
parts. Bi represents a contribution by predictor X1 Bg a con-
tribution by Xy, and ZBlerl2 is a component which involves the
correlation between Xy and X2. Clearly then, evaluating the
relative contribution of a predictor in the multiple regression
equation requires that correlation terms and other predictor's
beta coefficients be considered simultaneously. This would not

be the case, however, had each of the predictors been statis-

tically independent of other variables in the equation.

6.3.2 Errors/Program = £(SI + Normalized Variables)

As previously discussed in Section 5.0, prediction equations
for errors/program were also developed vsing the normalized
variables as predictors in combination with the Source Instruc-
tions (SI) variable, Xl. The results obtained from these
predictions provide information on how effectively the origi-
nal variables, once the effect of Source Instructions had been
"removed" from each predictor, combined with X1 to predict
errors. The prediction equation results are presented in
Table 6-8 through 6-12. Summary results for five and ten

6-21
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TABLE 6-8. PROJECT M,
ERRORS /PROGRAM = £(5[ + MORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

5 1w 18(MAX,)
MULTIPLE R 622 641 654
MULTIPLE R .387 611 428
STD. ERROR OF ESTIMATE 8.362  8.251 8,22
YARTABLES (Xx) COEFFICIENTS rxy

X1 SOURCE INSTRUCTIOMS .597 V564 V563
X57 EXIT POINTS/SI —e- - Mes - 213
X58  USING INSTRUCTIUNS/SI 15 31 - 128
X69 CONDITIONAL JUMPS/SI 163 123 132
X74  FUNCTIONS/S1 V195 V155 L2012
X71  SCALING./ROUNDING OPNS./5! --- 370 /163
X74  LOCK MACROS/51 e 191 102
X§2 FIXED PT, VAR. FREQ/SI N I ST
X35 REGISTER VAR, FREQ./S! YL Y 3t
X148 SI X AVG. NO., OPERATORS/ --- JIR7 WJ1lb

ARITHMETIC IN3TR./SI

AHNALYSIS OF VARIAMNCE

NC, SuM OF MEAN
PREDICTORS SRUARES OF SQUAREL F i
5 REGRESSIAN 17178.586 5 3u435.71?7 49,134 ¢.d91
RESIDUAL 27291.4719 389 69.926
19 REGRESSION 1823L,863 14 1823.486 26,742 <.l
RESIDUAL 261w0,793 334 68,135
TOTAL b4379.66 1 394

# BEST SINGLE PREDICTOR




TABLE 6-9.  PROJECT M,
ERRORS /PROGRAM =

ZERO ERRORS DELETED

£{S! + NORMALIZED VARIABLES),

VARIABLES [N PREDICTION EQUATION
5 1 11(MAX, D
MULTIPLE R2 598 617 619
MULTIPLE R 357 .381 383
STD. ERROR OF ESTIMATE 9.161 9.069 9.965
VARTAGLES (X) COEFFICIENTS Tyy
X1 SOURCE [NSTRUCTIONS 559 549 (533
X57 EXIT POINTS/S!I e = 383 - 195
%58 USING INSTRUCTIONS/SI 1386 Jdsa o 16
X61 ARITHMETIC INSTRUCTIONS/SI .- - .J66 75
X69 GONDITIONAL JUMPS/SI J216 164 L2645
X771 FUNCTIONS/S$1 <169 w7 L142
X74 LOCK MACRQS/SI S19b 175 166
X37 LABELED ARRAY VARIAQBLES5/S! —n- - . Jbh - 3
%92 UMDEFINED VAR. FREQ./S! an- bl At
X1,08 §1 X AVG. NO, OPERATORS/ .n= 089 J162
ARITHMETIC INSTR./S]
ANALYS1S OF VARIANCE
NO. SUM OF ME AN
PREDICTORS SQUARES DF SQUARE F t
5 REGRESSION 119u49,357 5 2739,17%1 33,265 &0
RESIDUAL 25472.578 299 33.922
1 REGRESSION 1u4362.613 1% 14806,201 13,371 <08
RESTDVAL 2417),810 294 g82.244
TOTAL I9042.434 304

# BEST SINGLE PREDICTOR
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TABLE 6-14, PROJECT B,
ERRORS/PROGRAM = £(5! + NORMALIZED VARIABLES)
VARTARBLES 1IN PRED!'CTION EQUAT]ON

3 Ad 14CMAX, )
MULTIPLE R2 717 J75% 772
MULTIPLE R 513 569 596
STD. ERROR OF ESTINATE 4,323 L, 178 4,136
VARTABLES (X) COEFFICIENTS Tyy
X1 SOURCE INSTRUCTIONS .587 651 L6491
X57 EXIT POINTS/SI ——- 169 - 57
X62 UNCONDITIOMAL JUMPS/SI --- 1 = 09
X71 SCALING/RQUNDING OPNS./SI == »'  ,25R V34b
X82 FIXED PT. VAR, FREO./SI ok .- . 358
X33 FLOATING PT. VARIABLES/S! -—- - 164 - 165
X389 REGISTER VARIABLES/S! -—-- - 114 - 316
X931 UNDEFIHED VARIABLES/SI .- . 269 - ,278
X299 DO LOOPS, NESTED AT 47H - L4l - .27 'S
LEVEL/ST
X143 INSTR,, 2HD LEVEL DO 193 243 241
LOOPS /S|
X148 INSTR,, 4TH LEVEL DO 433 Jb22 L2
LOOPS /S
ANALYSIS OF VARIANCE
"o,
N0 SUM OF MEAN R
PREDICTORS SQUARES DF SOUARE E P
5 REGRESSION 1932, 1un 5 385,42y 200708 ¢ g
RES I LUAL 1331,844 9y 13.692
g REGRESSION 21u4y.797 o2lu.p84 I Y PR
RESTLUAL 623,181 773 17,463
TOTAL 3763.94Yy 143

HOAEST SINGLE PRECICTOR
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TABLE 6-11. PROUECT B,
ERRORS/PROGRAM = £(SI + NORMALIZED VARIABLES),
ZERO ERRORS DELETED

VARIABLES IN PREDICTION EQUATION

5 1d 12¢MAX, D)
MULTIPLE R, W 735 777 .787
MULTIPLE R L5041 BEh 619
. STD. ERROR OF ESTIMATE 4,196 b,)¢9 5,982
VARIABLES (X) COEFEICIENTS Tyy
X1 SOURCE INSTRUCTIONS T NEE] JE58%
A58 USIMG [MSTRUCTIONS/SI -——- YR - .23¢
X59 COMMENT STATEMENTS/S! - - 204 - 135
X65 USER MACROS/S! --- TS 3151
X76 ADDRESS VARIABLES/S! --- 103 137
%82 FIXED PT. VAR, FRE1,/S| -——- .122 L1606
K91 UNDEFINED VARIABLES/sI 152 LT -~ .29 X
X133 (NSTR,, 2MD LEVEL DO 253 . 3416 258 :
LOOPS /51
X147 IMSTR.,, B6TH LEVEL OR LNWER L2716 L2115 LI
DO LOOPS/S !
X198 $1 X AVG. NO, OPERATORS/ - 137 1 - W J61

ARITHMETIC [NSTR./S! |

AMALYSTS OF VARTAMCE

NUY. SUM OF ME AN T
PRED1CTORS SQUARES UF  SQUARE F b

: 5 REGRESSION 134,559 5 3ng.ul2 23,953 < it

: RES | DUAL 1566.967 49 17,66

‘

;? 1 REGRESSION 2J01.177 11 236,118 17,022 <AL

! RES | CUAL 1355.349 34 16,476

TOTAL 311,526 9u

# BEST SINGLE PREDICTOR




TABLE 6-12. PRUJECT P,

ERRORS/PROGRAM = f(SI

+ NORMAL!ZED VARIABLES)

VARTABLES IN PREDICTION EQUATION

H 1 12¢HMAX. D
MULTIPLE R2 . 88¢ O34 +986
MULTIPLE R J774 871 972
STD. ERROR OF ESTIMATE 2.608 2.239 1,276
VARTABLES (Xx) COEFFICIENTS Ty
X1 SOURCE [NSTRUCTIONS 682 334 ,593%
X859 COMMENT STATEMENTS/SI V261 . 289 215
X62 UNCONDITIONAL JUMPS/SI B0 6012 .5u3
X63 CALLS/LIMKS/S! -- .198 ~ 052
XH9 CONDITIOMAL JUMFS/SH 16 - L2224
X71 SCALING/ROUNDING OPNS./SI == - 261 - LB
X77 ADDRESS VAR, FREQ./S! -m- - 135 - 422
X822 FIXED PT., VAR, FREN,/S! .= 360 - 158
X096 NONMESTED DO LOOPS/SI - - 3912 - .393
X97 DO LOOPS MNESTED AT 2MD ~—- V167 JAuy
LEVEL/S!
X132 INSTR, IN NOM-MESTED L 216 .- ~ 155
DO LOOPS/SI
Y147 INSTR, IM O6TH LEVEL OR --- L 242 ,22L
LAOWER DO LOOPS/SI
ANALYS1S OF VARIANCE
N0, SUM OF MEAN
PRED[CTORS SQUARES DF SQUARE F £
5 REGRESSICN 724,43y 5 L4b, 997 19,944 <. JJ1
RESIDUAL 211,11 24 7.23%
I REGRESSION  &15.275 1 81,524 16,062 0041
RESIDUAL 124.321 Ju 5,013
TOTAL 955.57 L)

* BEST SINGLE PREDICTOR




-

4017103dd 3T9INIS 1S3Ex -
@31373a S¥OYYI 0YIIZg R
a3SN SNOTLYANISAO 11V, o ‘
wit: 1hS" £1S° [55° ige" /3 |
88’ S¢l- L1l 865" zz9° d
TaviiinG Ho1101033d
s
z5¢° TN 1zh” H8Z" 116" ELILLE 1
£65° 859" 649° £¢5° £95° SY0YAI =4 -
o~
SSTLSTIVLS ROI1v133d40D 3
15754007 00
LA £61° 13A3T GNZ T YLSHT £fTX
Hee " gK1" 1S/504IVH 201 HIX
691" $61" 1s/Suoilound  #IX
T & gst1- 1S/SNOTLDONYLSHT 9HISN  BSX
961" 9Hz " gH1° 1S/Saune IYHOTLIGHOD 69X
+2289° 2949° =186° +696° «[68° SNOILDNYLSNT 3IDUNOS 1X
SINIID139300 NO15534934 :
d G° e qa eV ERLVARZ,
(531aVI¥VA GIZIIVHION + 1S)F = AVE00dd/ SHOYYI

¢ AUVHWWNS ¥0121033d 3ALS “¢1-9 3LVl

e e e e e et azets = L
R .



TABLE 6-14. TEN PREDICTOR SUMMARY,
ERRORS /PROGRAM = £(SI + NORMALIZED VARIABLES)

VARTABLES a ad B

REGRESSIOM COEFFICIENTS

X1 SOURCE INSTRUCTIONS L5640 LSSugi B30 608 , 3348

X57 EXIT POINTS/SI -.p98 - ,483 169

X58 USING INSTRUCTIONS/S! .181 149 .208

X71 SCALING/ROUNDING OPNS./S! ,a74 . 256 - ,261

X82 FIXED PT. VAR, FREQ./S! «,gé3 .122 . 369

X148 §1 X AVG. NO. OPERATORS/ 167 L1189 - 134
ARI THMETIC INSTR./SI

X59 COMMENT STATEMENTS/SI1 . 259

X62 UNCONDITIONAL JUMPS/S1 A1 - L2604 612

X69 CONDITIONAL JUMPS/SI .123 160

%73  FUNCTIONS/SI . 155 BLY;

£74%  LOCK MACROS/S1 ot 476

X91 UNDEFIMNED VARIABLES/SI . 269 .248

X133 INSTR,, 2MD LEVEL DO V243 . 396
LOOPS /S 1

X1J7 INSTR,, 6TH LEVEL 00 215 . 224
LOOPS/S 1

CORPELATION STATISTICS
rg,ERRORS . 563 533 . 649 058 .533
£ % ERRORS 317 284 421 JH33 . 352
PRED|CTION_SUMMARY
R2 ML) 617 AL 77 334
R Jull . 381 569 BiY 871

8ALL OBSERVATIONS USED
D7ER0 ERROR RATES DELETED

"BEST SINGLE PREDICTOR




predictors are presented in Tables 6-13 and 6-14, respectively,
For projects M, B, and P a total of 45, 43, and 45 predictor
variables, respectiyely, were available to be automatically
entered in the prediction equation (see Table C-1, Appendix C).

The predictability of errors is improved only moderately
when ten versus five predictors are used in the equation.
However, except for project P (Rz-.87), the predictability of
errors is generally low to moderate, ranging from R2-.38 for
project M to Rz-.60 for project B, using a combination of X1
plus selected normalized predictors. Judging from the summary
data provided in Tables 6-13 and 6-14, there appears to be
little consistency of predictors appearing in the equations for
each project. For five predictors, only one predictor, Source
Instructions, appeared in each of the five prediction equations
that were developed across all three projects, with variable
¥R9, Conditional Jumps/SI, appearing only for projects M and P,
I'or ten predictors, only threc variables, X1, Source Instructions,

%71, Scaling/Rounding Operations/5T, and M83, I'ixed Point Variable
Frequency/SI, appeared in one or more of the equations developed
for each project.

Source Instructions is the best single predictor in each
of the equations, and when considered by itself, as also indi=-
cated by the rusults of the previous section, it can be used to
account for a large percentage of the variation in errors that
is accounted for by the combined set of 10 predictors selected
for each project's equation(s).

For equations that were developed when zero errors were
deleted (Tables 6-9 and 6-11), it is found for ten precdictors
that only minor changes resulted; R2 decreased .03 for project M

6-29
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and increased .04 for project B, with respect to the pre-
dictability of errors using the normalized variables.
However, as observed in the results of Section 6.3.1, the
variables in the prediction equations do change when these
Z€ro error program-obsaervations are deleted. For project B
only four of the ten predictors using all observations were
reselected when nine zero error cbservations were deleted,
whereas for project M seven of the ten predictors remained
in the equation when 90 observations were deleted from the
analysis.

The low predictability obtained when using the normalized
variables seems to result for two reasons. First, as reported
in Tables 6-8 through 6-12, the correlation of each normalized
variable with errors was generally very low. This indicates
that the variable errors per program has very little in common
with these normalized variables other than Source Instructions.
A second reason for this low predictability results from the
fact that a majority of these normalized wvariables were
uncorrelated with each other. Thus, each variable is contri-
buting independently to the prediction of errors, with only
a very small chance that a suppressor variable; i.e., a variable
with zero or low correlation with errors and correlated highly
with a predictor that correlates moderately to highly with
errors, could be present that would improve the predictability
of these variables.

The results for project P are of interest here, not only
because of the high predictability obtained (R%=.871), but also
because this R? value was only .024 less than the value of
Rz (.895) obtained when errors were predicted as a function of
the unnormalized variables. For each of the othaer two projects,
the reductions in R valuaes were much larger (.18 for project M
and ,16 for project B).

6~-30
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Comparing the predictors selected for project P in
Table 6-5 (i.,e., when errors were predicted as a func-
tion of the unnormalized variables) versus the predictors
selected in Table 6-12 (when errors were predicted as a function
of Source Instructions plus the normalized variables), one
obsaerves that seven of the ten unnormalized predictions of
Table 6=-5 were reselected in their normalized form for tiae
equation in Table 6-12, The results of each table are repeated
in Table 6-15 for ease of comparison., (For project M with 395
observations, only four of the ten original variables were re-
salected in their normalized form, and for projuct B with 104
observations, five of the ten were reselected).

In Table 6-15 each of the correlations of unnormalized
variables with errors chunged in a negative direction when
the respective variable was normalized. For some variables
(X5, X8, X23, %28, and X53) this meant that their correlations
became smaller in magnitude, whereas for others (X17 and K62y
their correlation with errors increased in magnitude.

For project P this high predictability of errors (R2=.87) is
consistent with the high predictability (R2=.89) obtained when
errors are predicted using the unnormalized variables (see
Section 6.3.1), and indicates that predictability is relatively
unaffected when the original program complexity variables, with
the effect of Source Instructions removed, are combined with
X1 to predict errurs, One possible explanation for this con=-
sistency of prediction using different sets of prodictors
could be that project P implemented several new programming
techniques during its development, whereas projects i and B
did not to any great extent. Another explanation could be
that only a small, select group of particularly skilled pro=-
grammers were needed to develop the 35 programs of project P;

T T e S



TABLE 6-15, PROJECT P, PREDICTION EQUATION COMPARISON

RESULTS VARIABLES COEFFICIENT Txy

Xy
Table 6~5, RN Using Instructions -, 465 L3522
R%w, 895 XS  Communt 3tatements 762 .509
X8 Unconditional Jumps . 544 664
X17 3caling/Rounding Opns, -, 176 -.024
. X23 Address Variable Pred, -, 386 168
K28  Fixed Point Var, Freq. L 600 242
{37 Undefined Variablus L4436 567
K42 Hon=lested Do Lcops . 386 . 179
%51 Instr., 4th Lavel Do Loops -.374 Lu24
53 Instr., Gta Level or Lower 602 J3u
0o Loops
Table 6-12, X1 Source Instructiony L334 .593‘5rx2
R%=,871 X59 Comment Statement/sI .259 .20% =, 304
X622 Unconditional Jumps,/Sl L0102 WBed =121
W63 Calls/Links,sI B 198 -,052
®71 Scaling/Rounding Opns,,/SI -, 201 -, 406 =, 382
A77 Address Var. Freq./sI -, 135 -,022 -,190
X82 Fixed Pr, Var., Frog, 5.0 . 369 -, 058 ~.300
X9¢ Nonelastued Do Leopu/St -,302 «.393 -,572
X97 Do Leuops Nested At 2nd Lv], SI Vel T
X107 Instr,, vtn Level or Lowaer L2402 RN I

Lo Loops. 51
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whereas a much larger group of programmers with varying

levels of skill and experience were needed to develop the

499 programs of project M and B, since both projects over-
lapped and were concurrent with each other at different stages
in their software development.

For any of the explanations presert»d here, it should be
kept in mind that each of these projects was functionally
different from the others, and each was programmed in a
special purpose programming language. Any of these factors
in addition to others (e.g. small sample size of project P,
definition of variables, testing considerations for each pro-
ject) taken singly or in combination, could be largely
responsible for these obtained results.

JOTCT

In summary, with the exception of project P, the normalized
variables contributed appreciably less to the prediction of
errors than did the unnormalized variables whose results were
discussed in Section 6.3.1. This low predictability suggests
the need to identify any non-linear relationships that exist
among the predictors and errors, and then to define accordingly
the most appropriate non-linear model which could be used to
improve these predictors. Given these results, no prediction
of errors/program was attempted using selected sets of normalized
and unnormalized predictors in combination,

6.3.3 Error Rate/Program = f(Unnormalized Variables)

As discussed earlier in Section 5.0, the newly constructed
dependent variable, error rate/program, is analyzed in this
study both as a function of the unnormalized variables and as

a function of Source Instruction plus the unnormalized variables.
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The prediction results using only the unnormalized variables
are presented in Tables 6-16 thru 6-20. Tables 6-21 and 6-22
present summaries of these results for five and eight predic-
tors, respectively. The summary for eight predictecrs is pre-
sented based on the lowest maximum number of variables to be
entered in the equation over all projects. The lowest maximum
value was eight for project P for this set of predictors. Here,
as in Section 6.3.1, the number of unnormalized predictor
variables that were made available for automatic selection

for entry in the regression equation were 45 each for projects

i1 and P and 43 for project B (These variables are listed in
Table C=1 of Appendix C).

The summary results clearly indicate that a very low level
of predictability (R2 values ranged from .10 to .30) is cbtained
for error rate using the unnormalized variables. This predic-
tion is consistently low over each of the regression equations
obtained for each project both for five and eight predictors,
with the exception of the eight predictor equation for project P
which yields a moderate prediction of R2=.535. Also, little
consistency among predictors is apparent across all three
projects; When eight predictors were used only two predictors,
“uy Using Instructions and N5, Comment Statements, appeared in
the results for all projects. For five predictors, Using

Instructions was the only variable consistently selected in the
equation for each project,

One interesting result observed for this set of predictions
was that when zero error rate programs in project M and B were
deleted from the analysis (see Tables 6-17 and 6-19), the pre-
dictions improved; Rz for project M increased .06, and R2 for
project B increased .12. In the two previous sections, the
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TABLE 6-16. PROJECT M,

ERROR RATE/PROGRAM = fCUNNORMALI!ZED VARIABLES)

VARIABLES IN PREDICTION EQUATION
5 8 9(MAX.)
MULTIPLE R2 . 291 314 .318
MULTIPLE R P85 . 499 141
STD. ERROR OF ESTIMATE 2.89( 2.879 2.879
VARTABLES (X) COEFFICIENTS Ty
X1 SOURCE INSTRUCTIONS ~ 722 - .82¢ - ,131%
X% USIMG INSTRUCTIONS .251 .243 Lal
X5 COMMENT STATEMENTS - .94 - .J28
X15 CONDITIONAL JUMPS 374 . 277 - .09g
X16 FUNCTIONS .224 .219 H33
X35 REGISTER VARIABLES - .133 - 145 Y]
X37 UNDEFINED VARIABLES -- 148 - .47
X45 DO LOOPS NESTED AT u4TH LEVEL -——— 74 - 954
ANALYSIS OF VARIANCE
NO. SUM OF ME AN
PREDICTORS SQUARES DF SQUARE F L
5 REGRESSION 391,531 5 64 .306 7.221 <,f91
RES [ DUAL 3248.768 389 8.352
8 REGRESSION 354 .229 8 43.779 5.281 <. gg1
RESIDUAL 3249.379 386 8.29¢
TOTAL 3550.299 394

% BEST SINGLE PREDICTOR
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TABLE 6~17. PROJECT M,
ERROR RATE/PROGRAM = £(UNNORMALIZED VARIABLES), '
ZERO ERROR RATES DELETED

VARIABLES IN_PREDICTION EQUATION

;f 5 8 11(MAX.)
g MULTIPLE R, .371 .394 .ulg
MULTIPLE R .138 .155 ,168
STD., ERROR OF ESTIMATE 2.877 2.862 2.855
X1 SOURCE INSTRUCTIONS ~1.f80  <1.375 - ,292: :
3 X11 USER MACROS <999 .§96 - .123 3
1 X15 CONDITIONAL JUMPS Jb21 .356 -~ ,211 ,
- X16 FUNCTIONS .202 174 - 146 ;
X27 FIXED PT. VARIABLES --= = ,f99 - ,2M1 ]
X38 UNDEFINED VAR, FREQ, .2543 .211 - .224 '
X45 DO LOOPS NESTED AT 4TH LEVEL —-= - 83 - 144 :
X54% SI X AVG. NO. OPERATORS/ ——- 469 - ,262 ‘

E ARITHMETIC INSTR.

ANALYSTS OF VARTANCE

NO. SUM OF MEAN

PREDICTORS SQUARES DF SQUARE F L

5 REGRESSION 396.115 5 79.243 2.571 <. g1
RES IDUAL 2474.,437 299 8.276

8 REGRESSION Luo.J74 8 55.759 6.878 <.g41

RESTDUAL 2424.371 298 8.190

TOTAL 2874 .445 344

% BEST SINGLE PREDICTOR




TABLE 6-18. PROUECT B,

ERROR RATE/PROGRAM

= fCUNNORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

H 8 9(MAX. ) é
MULTIPLE R, +362 418 J43g |
MULTIPLE R .131 V175 185
STD. ERROR OF ESTIMATE 2,389 2.356 2.354
VARIABLES (X) COEFFICIENTS Txy
%
XS COMMENT STATEMENTS - .162 -~ ,105 )
X15 CONDITIONAL JUMPS - 481 - ,568 - ,234% :
X17 SCALING/ROUNDING OPNS, 143 212 - g2k :
X37 UNDEFINED VARIABLES .358 371 - 121 ;
X49 INSTR,, 2ND LEVEL DO LOOPS .223 397 - 437 1
XS5 INSTR., 3RD LEVEL DO LOOPS --= = ,236 = ,179 ;
X52 INSTR,, S5TH LEVEL DO LOOPS - 173 f56 j
X54 SI X AVG. NO. OPERATORS/ - .339 - 424 - ,217 i
ARITHMETIC INSTR. ;
ANALYS1S OF VARIANCE
NO. SUM OF MEAN
PREDICTORS SQUARES DF  SQUARE F P
5 REGRESSION  83.803 5 16,761 2.956  <,f85
RESIDUAL 555.173 98 5.665
8 REGRESSION 111,586 8 13,938 2.51d <.45
RESIDUAL 527.u474 95 5.552
TOTAL 638.976 143
# BEST SINGLE PREDICTOR
€-37
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TABLE 6-19.

PROJECT B,
ERROR RATE/PROGRAM

fCUNNORMALIZED VARIABLES),
ZERO ERROR RATES DELETEPD

VARIABLES IN PREDICTION EQUATIGCN

] 5 8 15CMAX, D
i
] MULTIPLE R, 484 543 .629
i MULTIPLE R L2304 +295 .393
E STD. ERROR OF ESTIMATE 2.144 2,093 2.p022
§ VARIABLES (X) COEFFICIENTS Txy
E
; X4 USING INSTRUCTIONS .371 LLus - .84
: X1y SYSTEM MACROS - - .292 - ,212
3 X28 FIXED PT. VAR, FREQ, 277 - - .52
L X43 DO LOOPS, NESTED AT 2ND LEVEL === .383 - 121
i X4?7 DO LOOPS, BTH LEVEL OR LOWER -—- 428 - 074
: X49 INSTR,, 2ND LEVEL DO LOOPS ,316 .755 - 082
; X570 INSTR,, 3RD LEVEL DO LOOPS - - 342 - L2111
j X54% S] X AVG, NO. OPERATORS/ ~1.162 -1.922 - L3193
X ARITHMETIC INSTR,
i
b
E ANALYSIS OF VARIANCE
{
i NO. SUM OF MEAN
; PREDICTORS SQUARES DF  SQUARE F P
P
'L' .
¢ ! 5 REGRESSIOM 125,202 5 25,045 5,447 ¢l
RESIDUAL 49, 1hb 39 4,597
, 8 REGRESSION 157.667 8 19.708 h,50¢ <. 31
1 RESIDUAL 376.680 86 4,38
3 TOTAL 534,346 94
E.
¥ BEST SINGLE PREDICTOR
1
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TABLE 6-2@. PROJECT P,
ERROR RATE/PROGRAM = £(UNNORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

5 BCMAX. )
MULTIPLE R, 643 731
MULTIPLE R 413 .535
STD. ERROR OF ESTIMATE 1.048 .985
| VARITABLES (X) COEFFICIENTS Tyy i
X2 ENTRY POINTS - L4993 -——- - 322
X3 EXIT POINTS --= = ,4383% < 309
. X4 USING INSTRUCTIONS - 319  -1.,172 - .208
i X5 COMMENT STATEMENTS 636 1.195 \132
] X18 SHORT DO LOOPS -—— - .369 - ,138
X2d LOCK MACROS -~ J4fg - .276 - .86
X28 FIXED PT. VAR, FREQ. .- 361 - .138 ]
X35 REGISTER VARIABLES - .276 --- - ,245 4
- X51 INSTR., 4TH LEVEL DO LOOPS - - 434 - ,22) 4
j X53 INSTR., 6TH LEVEL OR LOWER --- - ,881 = ,129 3
4 . DO LOOPS i
' ANALYSIS OF VARIANCE _
NO . SUM OF ME AN j
PREDICTORS SOUARES DF  SQUARE F L ;
5 REGRESSION 22,427 5  4.485 4,987 <91 ?
RES 1 DUAL 31,824 29  1.497 ]
1 8 REGRESSION 29.0#2 8 3.625 3,733 <.41 _
k. RESIDUAL 25,249 26 971 :
TOTAL 54,251 54 i

** BEST SINGLE PR DICTOR
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TABLE 6-21., F[VE PREDICTOR SUMMARY,
ERROR RATE/PROGRAM = f£(UNNORMALIZED VARIABLES)

VARTABLES o b Y 50 .
REGRESSION COEFFICIENTS
X4  USING INSTRUCTIONS . 251 371 - .319
X15 CONDITIONAL JUMPS V370 L6201 - L ug1n
X1 SOURCE INSTRUCTIONS - L722% -1, pagn
X11 USER MACROS V099 .328
X16 FUNCTIONS 220 202
X35 REGISTER VARIABLES - .133 - 276 '
X49 INSTR. 2ND LEVEL $ 223 316 4
DO LOOPS 1
XS4 SI X AVG, NO, OPERATORS/ - 339 -l.1620 1
ARITAMETIC INSTR, -
»2  ENTRY POINTS - JhogH ;
+A
CORRELATJON STATISTICS
T g LgPg Lo 92 .979 .263 ?
, .
TS|, ERROR RATE - 131 - 292 - .95 - ,276 - 3§l {
L, - L1310 - 297 - 236 - 31 - L322 {
2]’ ERROR RATE 17 385 y55 #98 154 ]
i, ERROR RATE ¢ ) ’ ! ) q
PREDICTION SUMMARY %
B\
R L2901 L7010 (362, hEb 643 i
R? 085 138 L 131 234 413 ;

AALL OBSERVATIONS USED

D:ERO ERROR RATES DELETED

H#BEST SINGLE PREDICTOR
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§ TABLE 6-22, EIGHT PREDICTOR SUMMARY,
; ERROR RATE/PROGRAM 3 f(UNNORMALIZED VARIABLES)
5
% VARTABLES ) b o8 ab o
3
- REGRESS|ON COEFFICIENTS
3
: X4 USING INSTRUCTIONS L243 J44S -1,172
j X5 CUMMENT STATEMENTS 998 162 1,185
g X15 CONDITIONAL JUMPS 277 356 - .568Y
2 X54 S1 X AVG, NO, OPERATORS/, L4690 - 42 -1, 220
g ARITHMETIC INSTR,
@ X1 SOURCE INSTRUCTIONS - B2 4. 3780
2 X1l USER MACROS 1986 L4318
i‘ X16 FUNCTIONS L 219 176
: X37 UNDEFINED VARIABLES Llug 371
X45 DO LOOPS, UTH LEVEL 074 - 983
X49 INSTR., 2ND LEVEL DO LOOPS 37 L7553
X5 INSTR., 3RD LEVEL DO LOOPS - 236 - 342
; X3 EXIT POINTS - ,u3gH
:
g CORRELATION STATISTICS
: Ly o 1,903 L.dgy L9012 979 . 279
T$1,ERROR RATE - L1310 - .292 - 105 - ,276 = 331
Ty, ERROR RATE - 131 - 292 - 234 - 319 - ,3d9
: £ ERROR RATE 17 185 15 FEL V995
}
E PREDICTION SUMMARY
)
3 J3 394 418 5u3 731
E, 2 199 L18S L1275 .45 L515
".
‘ JALL OBSERVATIONS USED
D2ERo ERROR RATES OELETED
MEEST SINGLE PREDICTOR
]
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deletion ¢f these same programs always increased the value

of R2 for project B and decreased or had little effect on the
R2 values for project M, when errors/program was being pre-
dicted. In these results, however, when predicting error rate
the R2 value for project M increases approximately 57% (from
.099 to .155), and the R2 value for project B increases approxi-
mately 68% (from ,175 to .295)., Both of these changes are
statistically significant. In fact, comparatively speaking,
when predicting error rate with the zero observations removed
from the analysis, one observes that the resultant increase

in R2 values could possibly be equated with the increase that
would result from three to four additional variables being
added to the prediction equation,

The increases cbserved here in the predictability of
error rate support the hypothesis stated in Section 3.0 which
suggested that programs with 2zero reported errors actually
had latent errors still in the program that had gone undetected
due to a lack of thoroughness in testing. As such, these
zere reported errors were considered as underestimates of
the total errors in the program, and their presence in the
analysis would therefore reduce the predictability ¢f the depen-
dent variable and increase the predictability when they were
removed, !lore will be said about the error rate measure and
this hypothesis later in the report.

As noticed in the previous section, when zero error rate
programs are deleted, different prediction egquations result.
For project il, deleting the 90 zero observations results i.
only tliree of the eight predictors being reselected; for
project B, only three of the eight predictors were reselaected.
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For the best single predictors of error rate among the
unnormalized variables that were in the regression equation,

no consistency at all is found across each project (see Tables "
6-21 and 6-22). It is interesting to note at this time that -
several of the eguations that were developed for this set of

predictions do not contain the best single predictor of error

rate among the total set of unnormalized variables. For

example, for project M using all 395 observations (see Table

6-16), the best single predictor is X7, Arithmetic Instructions

(r = -,148) and net X1, Source Instructions

(rxl, error rate ™ -.131). Xl is, however, the best predictor,

as reported in Table 6-18, when the 90 zero error rates are

deleted from the analysis for project !lI, For the results of

project B presented in Table 6-19 (95 observations used), the

best predictor is X15 Conditional Jumps (rxls, error rate ™

~-.331)., Finally, for the results of project P using five and

eight predictors (see Table 6-20), variable X2, Lntry Points

x7, error rate

<rx2, error rate - =,322) is the best predictor of error rate,
The fact that some of these best single predictor vari-

ables were not present in the various prediction equations

that were generated accentuates the need to proceed with caution

when any attempt is made to decipher the relative contributions

of each variable to the prediction from a multiple regression

analysis. Clearly it is the combination of variables which

should be considered and not any one variable separate from

the others,

In summary, for this set of predictions, with the exception
of the moderate prediction of error rate obtained for project P,
it is found that linear combinations of unnormalized variables

produce relatively low level predictions for error rate. This
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appears to be due to the low correlations that each of the
selected predictors had with error rate (see Tables 6-16 to
6-19). These low correlations stand in stark contrast to the
moderate to high correlations that these same unnormalized
variables had with errors. This shows that when the effect
of Source Instructions is removed from the error variable,
the normalized error variable (error rate) has little left in
common with any of the unnormalized predictors.

Thus it. seems clear that these results reiterate and
demonstrate the fact that a large portion of the relationship
between the unnormalized variables and errors/program result
from the combined influence of Source Instructicns in each.

This is what was found for the results as presented in Section
6.3.1, errors as a function of the unnormalized variables.

It appears warranted, then, that any future predictions of error k
rate from combinations of the unnormalized variables should {
investigate non-linear models, or use variables other than those

investigated in this study.

-4




6.3.4 Error Rate/Program = £(SI + Normalized Variables)

| The final set of prediction equation results are presentead

.ﬁ in Tables €6~23 thru 6-27 for five and ten predictors, wherein

J error rate is being predicted from a linear combination of the
normalized variables and Source Instructions. Summary Tables

-§ 6-28 and 6~29, for five and ten predictors, are also provided.

ﬁi The number of predictors that were made available for selection

by the regression procedure were 45 each for projects !l and P

and 43 for project B (see Table C-1),

In viewing the summary results one can observe that the
y use of ten versus five predictors substantially improves the
predictions for each project. The percentage increase in

{

i . values of R2 for each project ranged from an increase of 16} 1
j for project P to an increase of 23% and 38%, respectively, for ;

3 ) projects M and B. Additionally, the predictability of error ;

rate using this set of predictors (Rz values ranged from ,34 i
to .47 for 10 predictors) is low, but generally hiéher than the
previous results obtained for error rate (i.e., in Section 6.3.3).
Again project P is an exception, For project P the percent

of variance accounted for by five predictors is R2 = ,81; ]
for ten predictors R2 = ,94, These results represent the highest
values of Rz cbtained for project P over all the prediction

aquations that were developed for this project.

Using ten predictors, variable X58, Using Instructions/SI,
is the only predictor that appears consistently in each of the
prediction equations for all projects. For two of the three
projects, ! and B, this variable is also the hest single
} predictor of error rate. For these two projects Using Instruc-
tions/SI accounts for 475 (for project B) and S4% (for

6~15




TABLE 6-23, PROJECT M,

ERROR RATE/PROGRAM = £(S! + NORMALIZED VARIABLES)

VARIABLES [N PREDICTION EQUATION

5 pY:A 16 CMAX. )
MULTIPLE R2 545 . 603 .625
MULTIPLE R . 297 .364 . 390
STD. ERROR OF ESTIMATE 2.532 2,426 2.393
VARTABLES (X) COEFFICIENTS rxy
X56 ENTRY POINTS/SI - L2044 . 229
X57 EXIT POINTS/SI -— - .366 .123
X58 USING INSTRUCTIONS/SI . 357 .281 .397%
X59 COMMENT STATEMENTS/S! - . 179 L34
X64 SYSTEM MACRNOS/SI - 173 .279
X798 FUNCTIONS/SI . 257 . 246 L 245
X81 FIXED POINT VARIABLES/S! -— - 114 - g2y
X87 LABELED ARRAY VARIABLES/S! - ,129 - 106 - .116
X9 REGISTER VARIABLES - ,165 - .118 - .155
FREQ./S!
X91 UNDEFINED VARIABLES/S! . 167 . 116 . 321
ANALYSIS OF VARIANCE
NO. SUM OF ME AN
PREDICTORS SQUARES DF SQUARE F £
5 REGRESSION 1455.,927 5 211,185 32.935  <.431
RESIDUAL 2494,371 389 6.412
19 . REGRESSION 1294.469 19 129,¢u47 21.928 «.d7J1
RESIDUAL 2259.830 384 5.885
TOTAL 3554 .299 394

# BEST SINGLE PREDICTOR
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TABLE 6-24, PROJECT M,

ERROR RATE/PROGRAM = f(SI + NORMALIZED VARTABLES),
ZERO ERROR RATES DELETED

VARIABLES IN PREDICTION EQUATION

5 g 22(MAX,)

MULTIPLE R, .61g Lbub .679
MULTIPLE R 373 415 462
STD. ERROR OF ESTIMATE 2.454 2,394 2.341
VARIABLES (X) COEFFICIENTS rxy

X58 USING INSTRUCTIONS/SI .319 .278 71

X6F LABELED INSTRUCTIONS/SI . 145 .221 .227

X64 SYSTEM MACROS/SI .282 .199 V374

X66 EQUATE STATEMENTS/SI --- = ,f92 - 51

X68 LOGICAL CONNECTORS/SI -——- 137 147

X748 FUNCTIONS/SI .192 .178 174

X73 NESTED SHORT DO LOOPS/SI -—- - .96 - g3

X381 FIXED POINT VARIABLES/SI - ~ .f82 - g2

X84 FLOATING PT. VARIABLE - 104 - 103
FREQ./S1

X91 UNDEFINED VARIABLES/SI 214 .277 415

AMALYSIS OF VARIANCE
NO. SUM OF MEAN
PREDICTORS SQUARES OF SQUARE F P
5 REGRESSION 1069.392 5 213.878 35.507 <.fd1

RES IDUAL 1871.953 299 b.024

14 REGRESSION 1190.689 13 119.469 270.847  «.dd1
RES IDUAL 1679.755 294 5.7173

TOTAL 2878.445 g4

# BEST SINGLE PREDICTOR

6-47
L N o e oy
. l. . he PR ,_‘,--“" "Y .
. " .
-~ BN
4 R .
- - .
o, - h




e R

I’r'""“' o

TABLE 6-25. PROJECT B,

ERROR RATI/PROGRAM =f(SI + NORMALIZED VARIABLES)

VARIABLES [N PREDICTION EQUATION

H 19 13CMAX.)D
MULTIPLE Rz Chouw +579 605
MULTIPLE R 244 .336 .365
§TD. ERROR OF ESTIMATE 2.221 2.137 2.123
VARIABLES (X) COEFFICIENTS rxy
X57 EXIT POINTS/S! L4l .362 .219
X58 WUSING INSTRUCTIONS/SI .344 .363 J312%
X61 ARITHMETIC INSTRUCTIQNS/ST -—- - .139 - .69
Xo4 SYSTEM MACROS/SI -—— - 391 A4l
X68 LOGICAL CONNECTORS/SI - .158 738
X91 UNDEFINED VARIABLES/S!I -—- .158 147
X97 DO LOOPS NESTED AT 2ND -— - 279 1l
LEVEL/SI
X99 DO LOOPS NESTED AT 4TH - .653 - ,684 - .211
LEVEL/S1
X103 INSTR., 2ND LEVEL DO L2041 . 399 .191
LOOPS /S
X195 INSTR., 4TH LEVEL DO .508 .525 - .,134
LOOPS/SI
ANALYSIS OF VARIANCGE
NO, SUM OF MEAN
PREDICTORS SQUARES DF SQUARE F b
5 REGRESSION 155.766 5 31.153 6.318 L. o1
RES IDUAL ug3.21¢ 98 4.931
19 REGRESSION 214,411 19 21,441 4.697 .801
RES IDUAL 424,565 93 4.565
TOTAL 638.978 143
{ BEST SINGLE PREDICTOR
6-48
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TABLE 6-26., PROJECT B,
ERROR RATE/PROGRAM = £(SI + NORMALIZED VARIABLES),
ZERO ERROR RATES DELETED

VARIABLES IN PREDICTION EQUATION

5 17 23(MAX,)
MULTIPLE R, .61l4 .683 .775
MULTIPLE R .376 467 67
STD. ERROR OF ESTIMATE 1.935 1.842 1.734
VARIABLES (X) COEFFICIENTS Ty
X57 EXIT POINTS/SI - .199 .284
X58 USING INSTRUCTIONS/SI .386 489 L4678
X6J LABELED INSTRUCTIONS/S! -—- - .237 37
X62 UNCONDITIONAL JUMPS/SI —_—— .228 - .79
X66 EQUATE STATEMENTS/S!I - .232 - .160 - .232
) X738 FUNCTIONS/SI - - .275 - 093
: X71 SCALING/ROUNDING OPNS./SI -—— .282 035
X91 UNDEFINED VARIABLES/SI .241 .36 193
X193 INSTR., 2ND LEVEL DO . 259 .2213 216
LOCPS/S1
X198 SI X AVG, NO, OPERATORS/ - .182 - .148 - ,143

ARITHMETIC INSTR./S!

ANALYSIS OF VARIANCE

NO. SUM OF ME AN
PREDICTORS SQUARES DF  SQUARE F L
5 REGRESSION 201,897 5  4g.219 10,741 <.0f1
RESIDUAL 333,249 89 3,744
14 REGRESSION 249,335 14 24,933 7.349 .91

RESIDUAL 285.012 84 3.393
TOTAL 534,346 94

* BEST SINGLE PREDICTOR
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TABLE 6-27. PROJECT P,
ERROR RATE/PROGRAM = f(SI + NORMALIZED VARIABLES) o

VARIABLES IN PREDICTION EQUATION

5 1 2 CMAX. )
MULTIPLE R, .981 .969 .994
MULTIPLE R .812 .939 .989
STD, ERROR OF ESTIMATE .593 .373 .269
VARIABLES (X) COEFFICIENTS Ty
X58 USING INSTRUCTIONS/SI - - .316 - ,176
X59 COMMENT STATEMENTS/SI 676 J467 ,813%
X61 ARITHMETIC INSTRUCTIONS/SI -—— .530 A89
X62 UNCONDITIONAL JUMPS/SI .3641 . 336 421
X69 COMDITIONAL JUMPS/S! -—— 143 . 209
X74 LOCK MACROS/SI - ,268 --- - .28
X84 FLOATING PT. VAR, FREQ./SI .- - 303 - ,181
X97 DO LOOPS NESTED AT 2ND .39 .555. .552
LEVEL/SI
X98 DO LOOPS NESTED AT 3RD --- - .485 .169
LEVEL/SI
X192 INSTR., IN NON-NESTED - ,265 - .535% 931
DO LOOPS/S1
X145 INSTR. IN 4TH LEVEL - - ,255% - .121

DO LOOPS/SI

ANALYSIS OF VARIANCE

NO., SUM OF ME AN
‘ PREDICTORS SQUARES DF SQUARE F p
¢ 5 REGRESSTON 44,938 5 8,808 25.008 <.pd1
' RESIDUAL 14.214 29 +352

1g REGRESSION 5{.918 14 5.492 36.667 <.gd1
_ RESIDUAL 3,333 24 .139
;
, TOTAL 54,251 34

‘{ BEST SINGLE PREDICTOR

i
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TABLE 6-29, TEN PREDICTOR SUMMARY,
ERROR RATE/PRCGRAM = £(S! + NORMALIZED VARIABLES)

VARIABLES

e M g2 3 P
REGRESSION COEFFICIENTS
X58 USING INSTRUCTIONS/SI J281M L 278% L 363% L LEEN - 316
X91 UNDEFINED VARIABLES/S1  ,116  .277  ,158 .36
X57 EXIT POINTS/SI - .366 362,199
X64 SYSTEM MACROS/S! 73199 - L3091
X7/ FUNCTIONS/S1 L246 178 - 205
X53 COMMENT STATEMENTS/SI 179 L4670
X6 LABELED INSTRUCTIONS/SI V221 - 237
X61 AR[ITHMET{C INSTRUCTIONS/S! - 139 V539
X62 UNCONDITIONAL JUMPS/SI 228 .13
X66 EQUATE STATEMENTS/SI - 492 - .16
X683 LOGICAL CONNECTORS/SI 137 158
X81 FIXED PT, VARIABLES/SU - .114 = ;82
X84 FLOATING PT. VAR, T - 340
FREQ./S!
X37 DO LOOPS, 2ND LEVEL/SI - 278 /555
X133 INSTR., 2ND LEVEL DO 399,223
LOOPS /S 1
CORRELATION STATISTICS
TSl ERROR RATE - 131 - 292 - ,195 - ,276 =~ .3d1
y, ERROR RATE SXLAN R 1 A A 1
£ ERROR RATE 158 .222 997,218 66
?
PREDICTION SUMMARY
R, B3 L6W4 579 683,969
R 36 Lbls U336 Lue? 939

2ALL OBSERVATIONS USED
P7ERO ERROR RATES DELETED
HBEST SINGLE PREDICTOR
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project M) of the total variance accounted for by all 10
predictors selected for each project. In addition, for all
projects, the normalized program complexity variables are also
contributing significantly to the predictions for error rate
in these results,

Although the correlation of Using Instructions/SI with
error rate is low (from .31 to .47) for those projects where
it is the best predictor, the fact that this variable does
contribute substantially to error rate predictions is important
to consider. Using Instructions as described in Table B-1 are
instructions used to establish data structure interfaces in
the program. An interpretation then for the normalized vari-
able, Using Instructions/SI, is the number of instructions pex
100 lines of code used to establish data structure interfaces;
or more simply interpreted, data interfaces per 100 lines of
code. The fact that interfaces have been found to centribute
to errors are results which support the findings of other
researchars (Thayer et al. 1976; and Okimoto, 1975) (13, 1l4),
as cited earlier in Section 6.2.

Once again as found in the immediately preceding results
for error rate as a linear function of the unnormalized vari-
ables, one can observe that the predictions for error rate are
consistently improved for projects M and B when thc zero
program-observations are deleted from the analysis. This result
suggests that analysis of error rate supports the hypothesis of
lack of thoroughness of testing in some of these programs.

An interesting finding in these results is that variable
X59, Comment Statements/SI, is the best single predictor for

error rate for project P. The fact that X59 alone accounts




for approximately 70% of the total variance accounted

for by all ten predictors selacted for this project is sur-
prising. This percentage was even higher, 81%, when five
variables are conaidered.

The fact that the results for project P have been so
consistently different from the results of projects M and B
suggests that the function being programmed for project P, the
software development and testing environment, the programmers
and management of project P, and the CENTRAN language itself
are all contributing in some distinct or interactive way to
produce these unique results. Possibly the fact that project
P implemented the new programming techniques whereas the other
projects did not explains the high predictability of error rate
in these results. Although it could be suggested that structured
programs would require only few comment statements due to the
inherent readability that structuring a program is supposed to
provide, the opposite could have be~n true for these programs.
That is, since over half (66%) of the programs were structured
and more readable as a result, more comments may have been
incorporated as a direct result of being able to more readily
understand the flow of logic and read the programs. This
may have resulted in errors per 100 lines of code being more
easily detected when problems arose in the programs. Neverthe-
less, regardless of the numerous plausible hypotheses that
could explain the results for project P, given the information
available, it can only be suggested that a variety of factors,

as stated above, may account for these results.




In summary, since the results obtained for both sgets of
predictions for error rate were relatively low (see Sections
6.3.3 and 6.3.4), no further attempt to combine the normalized
and unnormalized variables to predict error rate was made.
Data Interfaces per 100 lines of code is a significant contri-
butor to the predictions for error rate. Other program
complexity variables also significantly contribute to these
predictions, Error rate was found to be a meaningful measure
to use for detecting the effects of error free programs on the
prediction of programming errors. Finally, the low predictions
obtained suggest the need to analyze these variables with
non=linear models.

6.3.5 validatlion of Prediction Equations for Sample §

The major purpose of validating predictions is to identify
and examine how well the same level cf predictions can be
maintained, carried over, or reproduced for a separate data
sample. This separate sample is assumed to be drawn from the
same population as the first sample for which the predictien
rasults were obtained. In practice, this validation procedure
(noxrmally referred to as cross~validation) is usually carried
out by applying the obtained regression coefficierts to an
identical set of predictor variables collected for the separate
data sample. Using these coefficients and the predictor vari-
able values, estimates of the dependent variable can then be
directly computed. These estimates, when correlated with the
actual values of the dependent variable that have bLeen collected
for the separate sample, can then provide information about
how well this separate sample validates; i.,e., shows consistency
of prediction, with the original sample, Validation, then, can
be considered as an important means for assessing to what extent
prediction results can be generalized to other samples.




Generally, it has been found that when the regression
coefficients obtained from a multiple regression analysis on
one sample are applied to a second sample, the correlation
between the weighted predictors and the dependent variable in
the second sample will be less than the multiple correlation
value (R) originally obtained from the first sample. This
phenomenon is referred to as shrinkage of the multiple corre- .
lation coefficient (Kerlinger and Pedhazur, pp. 282-284; 3
Ferguson, pp. 401-402) (4, 8). Basically, the reason for this
is that the multiple regressiocn performed on the sample data
capitalizes on chance. The highest product moment correlations
are selected to enter into the regression equation, and on subse-
quent samples these correlations would probably be lower, there-
fore yielding a somewhat lower overall multiple correlation.

-i-w
4

Sopse . L

The extent of the bias in sample values of R is directly
dependent upon the population value of the multiple correlation b
coefficient, the sample size, and the number of predictor
variables used in the equations., For validation purposes, it {
is possible to estimate the amount of shrinkage that will
rasult when a second sample is to be validated., The computa-
tional formula used to provide this estimate is as follows?y

82 al1 - (1-r%

N"l (6.1)
N=k=1

where ﬁz = the estimated squared multiple correlation in the
population; R2 a the obtained squared multiple correlation for
the first sample used to develop the prediction equation;

M = the number of observations in the second (i.e., validation)
sample; and k = the number of predictor variables used to obtain
the R2 value.
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For sample S (as well as for sample T), no separate
sample of programs were initially randomly selected and set
aside to use for cross-validation purposes. The interest at
that time wes to achieve the maximum attainable predictions
and the most representative results possible, using all the
obgervations that had been provided for each data sample.
Resultantly, for validation of sample S predictions, formula
(6.0) was used to estimate the amount of shrinkage of the
obtained values of R2 that would result had samples for each
project been set aside or made available for validation.

Since the highest values of R2 were obtained when errors/
program were predicted as a function of the unnormalized variables
(see results of Section 6.3.1), only these equations were
selected for validation. The validation results are presented
in Table 6=-30 for both five and ten pradictors. The obtained
value of Rz, number of observations used, and table reference
for the prediction equation results as cited in Section 6.3.1
are presented at the top of Table 6~30. ﬂz values and shrinkage
results are presented for sample sizes of N = 20, 50, and 150
programs, including a sample size equal to the actual number
of observations used for the original predictions.

Clearly these results show that the prediction equations
could be expected to validate:; i.e., show increasing consistency
with the obtained values of Rz, as the sariple size increases
and as the ratio of predictors to observations in the sample
becomes smaller. For example, for the five predictor equation
for project M, with a predictor to sample size ratio of
k/N = 1:4, ﬁz is about two-thirds the size of R2 (L.e., .239
and .514 respectively). When the hypothetical validation
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sample size is increased up to N = 150 and k/N = 1:30, the
estimated shrinkage of R2 is very small (approximately .02),
with an expected change in §2 from .514 to .499, 4

For additional discussion concerning the role of valida-
tion procedures in multiple regression analysis the reader
should consult the following texts and articles (Kerlinger and

Pedhazur, 1973; Lord and Novick, 1968; Herzberg, 1969; and
Mosier, 1951) (7, 8, 9, 12). |
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6.4 Sample T Results

Prediction equation results for errors »nd error rate
using sample T programs are presented in the following pages.
Results for five predictors were chosen primarily because
they were generally found to provide almost as good a predic-
tion of the dependent variable as that obtained when the
statistically selected maximum number of variables had been
entered in the equation. Usually a maximum of six to nine
predictors were entered in the eguation. In several subsystem
predictions for error rate, the maxinum number of predictors
was less than five. The maximum number of predictors entered
and €2 multiple correlation coefficient, R, obtained using
these predictors are nevertlieless reported for each subsystem and
for each dependent variable. Due to the large number of
regression equations being presented in this section, the
analysis cf variance tables are presented only for those re-
gressions for which the same set of predictors in all subsystems
were available to be used., Additionally, as with sample S,
results are reported for each subsystem using all observations
and with zero errors deleted from the analysis. Finally, all
results presented in this section should be interpreted cau-
tiously. This particularly applies to the results obtained
for (l) subsystems B} D, and E, specifically, because of the very
limited number cf program-observations in each (see Table 2-6),
and (2) subsystems F and G, because of the large percentage of
programs and source code in each subsystem having zero reported
errors (again see Table 2-6, Sample . Subsystem Statistics).
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6.4.1 Results for Errors/Program

The following tables of prediction equations and other
results for errors/program are presented in this section:

Results Tables

Exrors/Program = f(Program 6-31’, 6-32b
Structure + Programmer Variables)®

Errors/Program = f(Program 6-33a, 6-3ub
Structure Variables Only)d

Five Predictor Summary 6=35
Best Single Predictor Summary ... 6=36
Analysis of Variance Tables, 6=37

(Program Structure Variables only)

Validation Results, 6-38a, 6-39b

(Program Structure Variables Only)

A1l observations used

Zero error programs deleted

€A maxinum of 23 predictors were available for selection in

these predictions

A maximunm of 20 predictors were available for selecticn in
these predictions.
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A list of sample T predictor variables that were candidates
for entry in the prediction equations for errors/program
(i.e., Tables 6=-31 thru 6-34) is presented in Table C=~-2 of
Appendix C,

In the summary results (Table 6-35) for errors one can
observe that over all subsystems of sample T, regardless of
whether or not programmer variables have been entered in the
prediction equation, errors/program is consistently highly
predictable with obtained values of Rz in the range from .76
for subsystem A to .99 for subsystem D. Furthermore, there
initially appears to be little consistency among the best
single predictors of errors in each subsystem. However, con-
sidering the high correlations that were reported among the
five predictors TS, BR, LS, DATA, and EX, there is a high
degree of commonality among the best predictors for five of
the eight subsystems (A, C, E, G, and H). This commonality is
reflected in the correlation that each best predictor has with
Total Source Instructions (TS), reported in Table 6-35 as
the value of r .7 for each subsystem. tlote that the best
predictors reported are those found among only the five pre-
dictors that were in the regression equation. Sometimes the
best predictor among all variables to be selected for entry in
the equation may not appear in the equation (see, for example,
sample S results, section 6.,3.3). Table 6-36 presents similar
results as in Table 6-35, with the difference beiana that the
best single predictcr among all the variables available for

selection has been identified.
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For these résults (Table 6-36), specifically for errors
predicted from a linear combination of the program structure
variables when the zero errors are deleted from the analysis,
the Lust single predictors from seven of the eight subsystems
are all found to have nearly identical high correlations with
Total Source Instructions. Although some of the best pre- i
dictors are different variables, each is basically reflecting
the effect of length of program to a high degree. Notice
also, in Tables 6-35 and 6-36, that the best predictors' cor-
relations with errors are generally moderate to high. As

PR NN

indicated by the percent of wvariance in errors accounted for
by the best single predictors alone (see values of rz*' errors
in Table 6-35), they account for approximately 51% (sub=-
system c) to 94% (subsystem G) of the total variance in errors
explained using all five predictors (i.e., the Rz values) .
Ccnsequently, this suggests that other program complexity
variables are also significantly contributing to error pre-

dictability in some subsystems.

Referring to Table 6-~31, when errors are predicted using
both the program structure and programmer variables, it is
observed that only one programmer variable, WKLD, aprears in
any of the equations; and then for only two of six subsystems.
Thus, the RAT and RAT/WKLD wvariables were not selected as
statistically meaningful variables for the five predictor
solutions being presented. When the three programmer vari=-
ables were deleted from the analysis and errcors were predicted
only as a function of the program structure variables (see
Table 6-33), it is observed that (l) the high predictability
of errors is basically unaffected and (2) the predictors
selected for eacih subsystem do not significantly differ from

those selected when the programmer variables were also included.,
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In general then it can be stated that the three programmer
variables were of little value for predicting errors. Among
the possible reasons for this finding is that the RAT and
WKLD measures as constructed to evaluate programmers do not
truly reflect performance or load, or that these variables
should not be analyzed in a linear model.

Clearly, the RAT and WKLD measures as constructed and
applied are subjective measures used by the program managers
to evaluate programmers. Additionally, the measures used as
observation values in the sample T data represent averages
of RAT and WKLD for the total number of programmers (anywhere
from 1 to 15) responsible for programming each program or
function. Moreover, for each subsystem the correlations of
each of the RAT, WKLD, and RAT/WKLD variables with errors
were generally found to be low to moderate. A combination
of these factors 1s contributing to the relative ineiffec-
tiveness of these variables in the prediction of errors. It
is of value that these variables were included in this analy-
sis, in spite of their insignficant contributions to the pre-
diction of errors. Since programmers doc contribute to errors
(as a matter of fact they made the errors analyzed in this
study), it is suggested that more objective and standardized
personnel and job assessment instruments be developed and
applied for future studies. Also, a non-linear model may be
more useful than a linear one to evaluate the effectiveness
of programmer variables for error prediction purproses, Some
additional discussion of the programmer RAT and VWKLD variables
is presented in Section 7.1.
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With respect to the consiitency among predictors being
selected for each subsystem in‘the error prediction equations
for errors predicted using the program structure variables
only (Table 6-33), Computational Statements (CO!IP) and Comment
Statements (CO!) appeared in five of the eight subsystem
equations., These same predictors appeared in four of the six
subsystem eguations of Table 6=-31, errors predicted using
both the program structure and programmer variables.

Finally, regarding the effacts on the pradictability of
errors when 2ero errors are deleted (Tables 6-~32 and 6-34),
there are no significant changes in values of Rz over most
subsystems regardless of the praedictors that were being used
in the analysis. The only exception is subsystem F which
has 15 (approximately 41l% of the total) zero error programs.
The resulting increase was from R? = .80 to R2 = ,85,
(Tables 6=-33 and 6=-34), tHowever, as in the results for
sample 5, when 2ero error programs are deleted, different
prediction eguations usually result, A good example of this
can be seen for subsystem D in Tables 6-31 and 6~32., The
results are presented here for ease of comparison,

All Observations Used Zero Errors Deleted
(1i=15) (lN=14)
iF LUy LL .298
SYS .281 IF/TS .U59
COM -,192 I0/TS -,552
IQ/TS -,656 EX/TS L678%
EX/TS .555% CoM/TS -.206
R? = 973 R® = L1974

*Best single predictor of variables in cquation.
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These differences in predictors and coefficients demonstrate
the sensitivity of multiple linear regression analysis to
small changes in correlations,

The analysis of variance and prediction equation valida-
tion results are presented in Tables 6-37 and 6-38, respectively,
for regressions where only the program structure variables
are considered. The analysis of variance results indicate
that the predictor variables account for a significant pro-
portion of the total variance of errors/program. The F
statistic for each regression equation is statistically signi~
ficant at less than the .00l level of significance. For the
validation results of Table 6-~38, when 1) programs are considered
as a validation sample, only a low to moderate siirinkage in
the squared multiple correlation coefficient (Ez) for each
subgysten occurs. This snrinkage was tie greatest for sun-
system A with the largest number of observations (n=35l)., When
zero errors are deleted from subsystem A (see Table 6-39),
it is observed that tie shirinkage 1s considerably less as
compared to the shrinkage of 22 when all observations are used,
As is indicated in both sets of validation results, all
equations showed increasing consistency of prediction with the
original values of Rz as larger validation samples were used
to compute the shrinkage estimates for each subsystem. Con=-
gidering these results, it appears that ihad actual validation
samples been available, eacii of tlie obtained predic:ion equa-
tions would have shown contistent predictability of errors
in these samples.

In summary for errors/program, we can state that high
predictability results when using a linear combination of

program structure variables for errors collected throughout tae
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validation, integration, acceptance, and operational phases

of software development. Predictors which heavily reflect
length of program are generally found to be the best predictors
of errors; however, other program structure-complexity vari=
ables also contribute significantly to the predictability of
errors, And finally, the programmer rating and workload
variables as defined for this study are found to be of little
value for contributing to the prediction of errors,

6.4,2 Results for Error Rate/Program

The results for the analysis of error rate/program presented
in this section are as follcws:

Results Tables
Error Rate/Program = f(Program Structure + 6-408, G-Hlb
Prograrmer "ariables)c
Error Rate/Program = f(Program Structure =423, 6-43°

Variables Only)d
Five Preadictor Summary 6-44

Analysis of Variance Tables (Program 6=U5
Structure Variables Only)

8All observations used
bZero arror rates deleted

A maximum of 23 predictors were available for selection
in these predictions.

dA maximum of 20 predictors were avallable for selection
in these predictions,
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A list of sample T predictor variables that were candidates
for entry in the prediction equations for error rate is pre-
sented in Table C-3 of Appendix C.

The summary results for error rate (Table 6-44' indicate
that regardless of whether or not the programmer variables
have been made available for selection in the pradiction
equation, moderate to high predictability is achieved for
each subsystem of sample T, with the exception of subsystem F.
The best single predictor of error rate is one of the two nor-
malized Program Interface variables, AP/TS and SYS/TS, which
appear consistently as the besgt predictions in seven of the
eight subsystems when the program structure variables with
zero error rates deleted are considered. Additionally, these
interface variables account for a large portion of the overall
predictability in each subsystem, and other program complexity
variables appear to be significantly contributing to error
rate predictions (i.e., as evidenced by the difference between

% and r2* for each subsystem),

, error rate

Also a consistent finding in the analysis is that the
majority of predictors in the equations for error rate are
the normalized variables. This finding is observed for all
prediction results (Tables 6-40 to 6-43) obtained for error
rate,

By examining Table 6-40, it is noted that when the pro-
grammer variables RAT, WKLD, and RAT/WKLD are made available

for selection, only the Proqrammer Ratina variable (RAT) i=s
selected, and then only for two of the six subsystems, 1In
Table 6-U42 which reports the predictions after removing the
programmer variables from the analysis, the results show that




~ e 1 T T VT e 7o
¢ W e <1 T T T — x

(1) the predictability of error rate is essentially unaffected,
and (2) the predictors selected for each subsystem do not
significantly diffexr from those selected when the programmer
variables are made available to enter the regression equation.
In the analysis the correlations of each of the programmer
variables with error rate were observed to be low over each

of the subsystems; low to moderate correlations were observed
for these variables with the errors/program measure, Thus,

the programmer variavbles as defined for this study have a :
negligible contribution o the predictability of both errors ;
per program and error rate per program. i

To examine the consistency of predictors selected over
all subsystems, all results (Tables 6-~40 thru 6-43) show that
the three normalized variables AP/TS, SYS/TS, and EX/TS, are

the variables most frequently appearing when predicting error
rate over all 28 regression equations,

Examining the predictability of error rate when zero
error rates are deleted, it is found that with the excepticn
of subsystems F and G, no major changes in the value of R2
over each of the subsystems are observed. Since subsystems F
and G are quite unique relative to each other and to the six
remaining subsystems with respect to the large percentage of

arror free programs in each, a further analysis of asrror rate
in F and G is presented in Section 7.2,

The analysis of variance results presented in Table 6=45
indicate that the F statistic for each subsystem's regression
cyuation is significant at less than the .001 level of signi=-
ficance. The linear predictions then account for a statisti-
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cally significant proportion of the variability in error rate,
wherein this proportion is measured by the values of R2 for
each subsystem,

6.4.3 Sample T Prediction Consistency Analysis

The predictions for both errors and error rate are
generally moderate to very high for each data sample over all
predicticns obtained., For the analysis of sample T results,
a set of five predictor variables i1s used uniformly across
all subsystems to predict srrors, and a different set of
five 13 used to predict error rate. a significant change in
tlie squared multiple correlation coefficient from that
obtained for the bast five pradictors in each subsystem would
indicate inconsistency.

For errors/program the five predictors from subsvstem A
are used (i.e., TS, AP, I1I/0, COLIP, and COi!). For error rate,
the subsystem A predictors (sSvys, AP/TS, 8YS/TsS, Lik/TS, CON/TS)
are also chosen. These predictors werae used since they were
automatically selacted Ly tihe regression procedure based on
the largest sample of observations (n=51) available for
sample T.

The results of this consistency analysis are presented
in Tables 6-46 (for errors) and 6-47 (for error rate). All
predictors in each set of variables are forced into the equa-
tion in order to obtain comparable results over each subsystem,
Since the predictors for subsystem A had not been selected
by the regression procedure for the other subsystems, a
reduction in the value of R2 for each subsystem except A

was expected.
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For errors/programn, 1t is observed that, using the same
set of predictors, moderate to high predictability is maintained
over all subsystems., For error rate, less consistency of
prediction results., Nevertheless, for six of the eight
subsystems (A thru F) error rate predictions are still in
the moderate to high range,

One particular interpretation of these results is that
since the same variables appear in the equations for each
subsystem, an estimate of how these variables contribute to
errors in general may be obtained. In spite of the apparent
differences among the subsystems of sample T, there is re-
markable consistency in results of applying the same set of
five predictors to all subsystems. These results may then
apply to programming in general, or at least to command and
control systems using JOVIAL J4.

Since the predictability of errors and error rate was
higher for mample T programs than for those of sample §,
predictions for errors and error rate were obtained using
the two distinct sets of predictors over all 249 program
observations of sample T. These results are reported in
Table 6-48, The predictions were observed to be in the moderate
range for both errors and error rate. Given the larger sanple
involved and tihe increased variability over all variables
that results from this aggregation over all subsystems, tile
predictions may be generally more indicative of the true
values of R, Rz, and other correlation and regression statig-
tics in the population of programs of which these 249 programs
are but a sample.

6=102




TABLE 6-48, SAMPLE T PREDICTION RESULTS USING ALL SUBSYSTEMS

(N=249)
REGRESSION PREDICTION
VARTABLE COEFFICIENT SUMMARY
ERRORS /PROGRAM ;
]
TS 7583 5%, ERRORS=  .765 ;
AP .218 T x,ERRORS= ,586 ;
1/0 - .@5¢ R=  .797
COMP ~ .116 R?z  ,635
CoM JA43 STD. ERR. EST.= 6.46U
ERROR RATE/PROGRAM
SYS - B4 g“,ERRORS= L641 j
AP/TS . 459% T % ERRORS= .412 |
SYS/TS . 286 Rz ,714
EX/Ts . 235 R2z . s1g

COM/TS 885 STD. ERR. EST.= 2,171 .

# REST SINGLE PREDICTOR




T

Several comments are important here regarding the
consistency analysis results obtained using each subsystem
(Tables 6-46 and 6-U47) vis-a-vis the results observed using
all sample T programs (Table 6-48)., First, for errors/program,
at the subsystem level (Table 6-~U46), Total Source Instructions
(TS) is the best predictor of errors, and the four program
complexity variables (AP, I/0, COMP, COM) are contributing
significantly to error predictability. 1In contrast, at the
aggregate level over all subsystems, Total Source Instructions
alone accounts for almost 92% of the total variance explained
by the five predictors. At this level the four complexity
variable have only a negligible effect on the predictability
of errors/program. An important implication is suggested by
these results. When estimating the total number of errors
likely to be found as a result of formal testing for a group
of programs that are functionally heterogeneous (and similar
in nature to those of sample T), the size or length of each
program may be the single most important predictor, Whereas
for programs that are more functionally homogeneocus, other
program complexity variables in addition to program length
should be considered in the prediction process to achieve
some initial estimate of errors/program.

For error rate/program, regardless of whether the pre-
diction is based on sets of programs at the individual subsystem
level or using the entire sample of 249 programs, each of
the program complexity variables (s¥s, AP/TS, SYS/TS, EX/TS,
COM/TS) in combination are contributing to the predictability
obtained. At the subsystem level this is true for at least
five of the eight subsystems, A, C, E, G and H. This result
suggests that the overall variability of the error rate measure

and its predictors (four of which were normalized program




complexity measures) were essentially unaffected by the

aggregation over all subsystems., Thus, error rate/program
and its predictors may be more stable measures to be used for
prediction purpoges, regardless of the functional mixture of
programs being considered.

e AT miailh v




RS a e e e e i S ci0g Fac ko Al i

7.0 ADDITIONAL ANALYSIS

7.1 Error Rate and Programmer Variables

Since the programmer Rating (RAT) and Workload (WKLD)
variables proved to be of no predictive value to errors or
é error rate when combined with program structure variables,
¢ it was decided that a more thorough analysis of these vari-

ables particularly as they related to error rate, would be
performed,

St

qgITIN T T

Essentially in this analysis the average workload and
average error rate for different categories of programmer ratings
are calculated. Then, how different levels of programmer
rating and workload affect the error rate is determined. This
analysis is performed over all program-observations of sup=-

systems A thru E. The results of this analysis are presented
in Table 7-1.

R R YT GE T TS T T

¥
i
b
4
'
i

Each of the average error rates is statistically tested
(using the 't' test) for significant differences with each
neighboring mean value in the following manner: tihe average
error rate for programmers rated less than 10 (i.e., 1.50)
was tested and found not statistically different from the
average error rate of prograrmmer's with ratings from ll to

12 {i.e., 3.22). The average error rates for thesc tvo groups
combined was then tested for a significant difference with
the next error rate value (1.62), showing again no siynificant
difference. The average of the three error rates was then

T I DT SR T T

compared with the value of 2.99; again no statistical signifi-
cance was found, (This same procedure was followed for each

of the remaining groups of programmer ratings). The only




TABLE 7-1, SAMPLE T, ERROR RATE AND PROGRAMMER
VARTAUBLE RELATIONSHIPS

;

- PROGRAMMER NUMBER AVERAGE AVERAGE

{ RATING PROGRAMS WORK LOAD ERROR RATE
<1 8 1.8 1.5¢ )
11-12 18 .97 3,22 [2.43

13-14 15 1.18 1.62

15-16 22 1.18 2.99

17 27 1.33 4,36 J4.36

? 18 16 1.33 2.95 ]

] 19 19 1.34 2.56 |2.4b

29 14 1,34 2.85

(N=135)

T P —

aca ® o




statistically significant differences that exist occur as
indicated between the bracketed groupings of means; i.e.,

{1) between tihe average error rates for programmers rated in
the < 10 to 16 and 17 categories, and (2) between the error
rates for programmers rated 17 or higher (i.e,, the difference
between 4.36 and 2.44 was significant at the ,05 }evel).

Basically the following observations can be made from
these results:

(1) the lower rated programmers with lighter workloads
do produce significuntly fewer errors per 100 lines
of code as compared with the higher rated programmers
who had the heavier workloads:

(2) the same high rated programmers (i.e., RAT = 17)
produce significantly more errors per 100 lines
of code as compared with the top rated programmers,
irregardless of the relatively high workload each
group had; and

(3) the highest rated programmers having the heaviest
workload produced as many errors per 100 lines of
code as did the lowest rated programmers having
the lowest workload.

Additionally, using this kind of analysis as compared to the
linear regression approach, one can clearly see the non-linearity
in the relationship of error rate with both programmer workload

and rating. That is, as both RAT and WXLD variables increase,
error rate also increases up tn a point (i.e., RAT = 17 ) and

then becomes smaller with still increasing values of RAT and WKLD.




As cited in information provided about the RAT and WKLD
variables of sample T, many of thie programmers specifically
rated in the RAT = 17 category were managers not only managing
the software development effort but also programming at the
same time. This seems to suggest that managers who also
contribute to the programming effort contribute significantly
to errors in programs, more so than programmers who do nothing
but program,

The method of analysis used here best approximates the
standard analysis of variance approach typically used to
analyze experiments involving one or more factors. Although
tie analysis of variance methodology 1is generally not used
for purposes of prediction, when properly applied it can be
very useful for identifying relationships among data variables
that may go undiscovered using linear regression analysis.

Additionally, the kinds of interpretations of data
relationships that can be made using the analysis of variance
approach nay in many instances have more operational meaning
than those allowed using tile regression approach. For this
reason, the analysis of variance approach and other methods
of analysis (e.g., contingency table analysis using chi-squafe
tests, non-linear regression models) are strongly suggested
as additional mcthodologies which can and should be employed,
where applicable, in future software reliability analysis
studies where programmer, project, test, software environment,

and error data are all available for analysis.
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7.2 Error Rate and Source Instructions

Throughout the study of error rate/program it was observed
that the correlation between error rate and total source
instructions was consistently low, but negative, with one
exception. For each of the sample T subsystems, the correla=-
tions, as reported in Table 7-2, exist between error rate and
the Total Sburce Instructions variahle (TS), when the error
free programs are included and then excluded from the analysis.

Basically, the consistent increase in magnitude of each

of these correlations (with the exception of subsystem G)

and the consistency of the low to moderate linear relationship
between error rate and source instructions over all subsystems,
when the error free programs were deleted, supports the hypo-
thesis that longer programs are less thorougihly tested. The
hypothesis asserts that longer programs were less thoroughly
tested relative to the shorter programs., This is likely to be

the case since as the length of a program increases, a more rapid
than linear rate of increase in the number of paths through the
program usually would occur, thus increasing a program's com-
plexity., This increased complexity would then result in tue
longer programs requiring more time to test and thus they might

very well be less thoroughly tested.

The fact that this hypothesis can be considered as a
plausible explanation here and that these results are not just
correlaticnal anomalies is borne out in the following analysis
of error rate presented for both subsystems F and G (see
Tables 7-3 and 7-4, respectively).




TABLE 7-2. CORRELATIONS BETWEEN ERROR RATE AND TOTAL SOURCE
INSTRUCTIONS FOR SAMPLE T SUBSYSTEMS

SUBSYSTEM ¥1S,ERROR RATE
USING ALL WHEN ERROR FREE
OBSERVATIONS PROGRAMS DELETED
A -.238 C51) -.361 C4bd
g2 -.671 C16) -.671 C16)
C ~-.235 €39) -.317 (36)
) -.5@88 (15) -.555 (14D
E - 414 1) -.496 C13)
F -.@96 (37> - 442 (22D
G .167 (435) -. 878 (34
H -.211 (32) -.251 (31)

3SUBSYSTEM B HAD NO ERROR FREE PROGRAMS.
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For both sets of results, all programs were classified
as being either above or below the average value of source
instructions; the average value of error rate/program was
then computed for each classification. Essentially for both
subsystems, no differences were observed between the average
error rates for the shorter programs versus the longer
programs, whereas the differences between the average length
of the shorter compared to that of the longer programs was
strikingly different. Now, when the error free programs are
removed and only the programs with errors are classfied
according to the same procedure, significant differences
between the error rates for the shorter versus the longer
programs do exist. Finally, when this same set of programs
is classified even further into three categories as
indicated, the negative, low level linear relationship between
error rate and source instructions becomes apparent.

These results are interpreted as lending support to the
hypothesis that longer programs, in particular those with no
errors reported, were less thoroughly tested than the shorter
ones .,

In summary then, it is not known whether the programs with
zero reported errors are truly error free. When these progqrams
are considered to have unreported or latent arrors -emaining
in them and are removed from the analysis, then the consistency
of the relationship between error rate and length of program
becomes more strikingly apparent, and hypotheses concerned with
thoroughness of testing of the longer versus that of the shorter
programs become more readily testable.




8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The major purpose of this study was to determine how
predictable programming error measures are from a combination
of program characteristic variables using multiple linear
regression analysis, By examining the degree of predictability
obtained, the effectiveness of the linear regression mndel
in software error prediction studies may then be evaluated.
With respect to this purpose, given the analysis results

obtained,

the following conclusicns can be drawn:

The predictability of programming error measurementas
are variable, ranging from very low to very high.
For the errors/program measure, predictability is
found to be consistently in the moderate to very
high range, For the error rate/program measure,
predictability is generally less than that obtained
for errors/programs; with the predictability ranging
from very low to high and with less consistency than

errors/program throughout all the predictions obtained.

The variability in the predictions obtainad over
both data samples is considered to be strongly
related in varying degrees to each of the following
factors:

a. functional differenc. among the various

programs tiaat were Jdeveloped

b, differences in the programming language used

8-1
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c. the length of time formal error data collection

was carried out

d. the amount and thoroughness of testing of
each program

e. inadequacy of the linear model to provide
perfect predictability

f. other programmer, project, and management
factors affecting the software development
process.

8.2 , Direct Recommendations

The following set of recommendations discuss measures
that can be taken to bring about an increased consistency of
prediction of programming error measures in future software
error prediction studies. These recommendations pertain to
the predictor variables, the programming error variables,
applications of the multiple regression procedure, and software

testing procedures,

(1) Predictor Variables - Predictor variables should be
accurately identified and concisely defined prior tc the begin-
ning of software development. Predictors should be identified
which not only reflect selected program and lanquage=-specific
characteristics, but moreover they should include a variety
of candidate programmer, management, and software development
environment variables which are suspected of reasonably
affecting the guality and reliability of the software being

developed,
8-2
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A baseline set of predictor variables should be defined

and applied over the general range of scftware projects so

that consistency of measurement can be obtained. This baselinc
set can be compiled from the results of +this study's five and
ten predictor summaries. As further studies identify addi-
tional predictor variables, the baseline set should be

expanded.

Data for these predictecr variables should be collected

- throughout the successive phases of software development. Any

significant changes or modifications should be rccorded,

dated, and the cause of the error determined.

In order to benefif the generalizability of future erzor
prediction studies wherein different programming languages
will be involved, present and future research effort should
be directed toward identifying those language and program charac-

teristics that may be equated or made comparable between two

or more languages.

(2) Programming Error lleasures - These measures should

be concisely defined and collected throughout all paases of

software development. In addition to a description of the

errors, their symptoms, and the program changes regquired to
correct the errors,édther data should be collected which would
include when the error was found, the method used to detect

the error, and an estimate of the total effort (e.g., man-hours,
computer time, documentAation changes, etc.) involved in error

identification and correction.



Of particular importance for error prediction purpcses
is that a taxonomy or typology of programming errors be developed

such that more definitive predictions can be developed for

separate versus a gross aggregation of error types.

Each of the errors, regardless of error type, should further

be classified and weighted with respect to their criticality

or severity for impeding the achievement of the software develop-

ment project objectives. Once this has been accomplished, then
predictions of errors having different criticality can be per-
formed and the most important variables for each can then be
idenhtified. Existing error collection tools could be expanded
to classify and weight errors. lanually collected error data
should also be classified and weighted ei*her manually or by

interfacing with error collection tools.

(3) Multiple Regression Apolications - A parallel pre-

diction approach which utilizes multiple regrassion analysis

applied at various milestones or stages of software cdevelopment,

testing, and operational usage is recommended for future error

analysis and prediction studies.

The parallel prediction approach proposes to make separate
predictions of errors during each of the designated stages

during the project, using a specified set of predictors for

which data would be collected at each of these stages. Of

special interest in tqls analVSLS is the identification of

particular criterion error measures (e.g., gross error counts

or error rates for given error types, or errors weignted by
severity) whose overall predictability is changing meaningfully
cver time. Also of interest at each stage is the relative

importance of each of the predictor variables in the eguations.

Clearly, any of the predictors £found to svstematically increase

3-14



(or decrease) in explanatory power over time 1s deserving of

further attention.

Additionally, since data would be available from prior
time periods using this approach, one could investigate any

time lag relationships that may exist between the predictors

and errors when predicting errors at later stages in the

project.

Using this parallel predictions approach, both linear

and non-linear models should be investigated.

(4) Software Testing Procedures - Throughout this report

the thoroughness of testing in each of the two data samples

was repecatedly stressed as an important factor contributing
towards the identificaticn of errors in programs. It is

strongly recomnmended that the amount of testing of program

modules be measured in software development projects as much

as possible so that errors weighted by amount of testing can
be analyzed. This measurc of amount of testing should address
possible paths tested and range of possible inputs and outputs

exercised.
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8.3 Recommendations for Further Research

Throughout the course of this study, the need to perform
additional research on the available data became obvious.
However, such research was beyond the scope of this contract.
Four of the major topics of interest and value to other software

quality and reliability studies are presented.

(1) Non-Linear Regression BAnalysis - This study suggests

that non-linear regression will improve both the consistency
of the predictions and the predictability of each of the pro-

gramming error measurements. A continued analysis of both

sample S and sample T data along with other available data

samples snould be investigated for error prediction purposes

using non-linear regression models.

Consider, for example, tnat the actual error rate of
programs that nave been thoroughly tested increases up to a
certain level for a given number of source instructions, =nd
then it increases only slightly thereafter for continuing
increases in program lengtn. That is, the error rate becomes
almost constant after a certain program lencth. This error
rate could be estimated for the sample S and sampie T data

using the equation
- . . —2 \
Y' = a + bx + 2ox (8.0}
The independent variable (x) in this eguaticn is the total
source instructions variable (X1 or TS) for either sample.

The dependent or predicted variable (Y¥') is the new estimated

value of error rate cbtained for each program in the two Jata

8-6
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samples that are presently available. This newly estimated
cr revised error rate (hypothesized for thoroughly tested
programs) would replace the observed error rates for many of
the programs used in this study, which were probably not
thoroughly tested. Figure 8-1 depicts the observed error
rate-program length relationships for the three projects of
sample S as contrasted with the new or revised estimates of

error rate using the non-linear model described above.

Using these revised or new estimates (Y') of what the
actual error rates for these sample programs should be, this
new variable can be predicted using various non-linear forms

of the predictor variables in a multiple regression eguation.

(2) Predictions By Error Tvoe and Severitv - As mentioned

in the earlier discussion of recommencations, it is strongly

recommended that errors be classified according to tyve and

severity and that predictions be cbtained for those classifi-

cations. During this study no data was available for either
sample that would enable the assignment of such classifications
to the errors in each program. If this data is available,

it woulu then be possible to develop different regression
equaticns for different tvpes of errors. The results of such

an analysis should show higher predictability and give insights
more directly relateé to cause~effect than were obtained by

aggregating errors.

(3) BAnalysis of Error Free Progrxams - I1f the zero reported

error programs that appeared throughout the analysis were in
reality error free, then an analysis directed at determining

the characteristics of these programs would be very meaningful.

Those characteristics which differentiate error free from

error prone modules could be determined.
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(4) Analysis of Constant Size Programs - In addition to

the normalization procedure used to construct additional pre-
dictor variables for this study and the partial correlation
procedure discucsed in Section 5.0, one straightforward pro-
cedure for controlling for the effect of program length in

this analysis would be to analyze different sets of constant

size programs in each given sample. This could be accomplished

by developing groups of programs, for example, that had an
average program length of 50, 150, 250, etc. source instructions
@ach. 'Then only those programs falling within 1 or 1/2 standard
deviation above and below the mean would, for statistical
purposes, be considered as a group with constant program length.

A major benefit of this analysis would be to identify how the

predictability of errors and error rate Jdiffers over each of

these groups, and whiat variables are the most important

predictors of errors for smaller, medium, and longer length

programs.
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8.4 Proposed Support Tools and Techniques

To most effectively apply the results of the study tcward
obtaining more error free software, support tools and technigques
are required. This section proposes tools and techniques

conceptualized throughout this study.

(1) Collection of Data for Predictor Variables - Predictor

variables which define program characteristics can be measured
frgm source code. Those measurement programs already in exist-
ence for specific projects are known as scanner programs. To
enable the most accurate and effective method of measuring the

predictor variables, Lanaguage Scanners should be developed as

part of support software packages. Language Scanners should
measure, at a minimum, the baseline set of predictor variables
defined under the first recommendation of Section 8.2. Language
Scanners can easily be added, for example, to a programming
support library which stores and maintains source code as well
as performs all compilations. A Language Scanner can be prc-
vided to support each language. in the same manner as a pre-

compiler is provided for each structured language.

(2) Evaluation of ligh Order Languages - IExisting high

order languages should be analvzed to identify those charac-

teristice which are most closelv correlated with errors. When

such characteristics are identified, it is necessary to determine
which of these characteristics do cause errors. For tnose cases
when cause is established, preventive measures could be introduced.
This type of evaluation can apply not only to existing ianguages

put also to any language under development or modification.
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(3) Test Support Tools - Test support tools are under

Gevelopment througnout the software industry, particularly

in the areas of identifying program paths. Such a tool should

also contain a capability for weighting (or accepting manual
weighting) the various paths. Weighting might include such

factors as frequency of use and criticality. Testing emphasis

could then be directed according to the weighting scheme.

Another test support tool to be developed is an input/

output range definer. Representative inputs can be selected

for path testing Ifrom the required range of values. The
number of different outputs can be compared against the re-

guired range of outputs. Untested outputs can be identifiead.

Botnh testing aids proposed here will assist in icden-
tifying desired testing and in determining where available
resources should be applied during testing. A combination
of number of paths exercised and the range of inputs and

outputs tested is a further measure related to software

system reliability.



8.5 Summary of Recommendations

The following list is a summary of recommendations

resulting from this study. Items (1) through (4) are direct

applications of the results.

(1)

Items (5)

(3)

(8)

(9)

Deiinition and collection of data for predictor

variables.
Error classification and weightings.

Apply regression models, both linear and non-linear,

throughout the software development process.

Define testing technigues which measure thorouginess

of testing.
tnrough (9) recommend further research.
Investigate non-linear rmultiple regression.

Classifiy errors according to tvpe and severity and

opbtain predictions for these classifications.

Continue analvsis of error-free orograms from a

broader data sample.

Continue analysis of programs grouped by relative

size from a broader data sample.

Apply the prediction model obtained by this study

over a broader data sample.

8--12
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Items (10) through (12) identify software suppurt tools and
technigues which will assist in implementing the preceeding

recommendations.

(10) Develop Language Scanners to measure predictor

variables.
(11) Evaluation of high order languages.
(12) Develop test support tools which a) identify and

welght program patns, ané b) determine representative

test input to prcduce reguired outputs.
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(This Appendix contains a dilscussion

of considerations on the measure of

error to be analyzed in software

error prediction studies).
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ES 4

Considerations on the Measure of Error

to be Analyzed in Software

Error Prediction Studies

In addition to the very complex problem of the
definition of an error, there is the puzzling problem of
what measure should be used to represent the errors in a
routine, module, or program, once the data is collected.
(Of course, this decision should be made prior to data
collection). Is it the number of errors in a program?

If so, this leaves something to be aesired, since a very
short program of say, ten instructions with three errcrs,
would "look" the same as the dependent variable of a verv
large program of say, 3000 instructicns with three errors.
These extremes in program length do exist in the data
analyzed for sample S and sample T. The most cdesirable
solution to the problem would be to collect data in such
quantities that every individual program length couldé be
represented a number of times, consider each program
length a sample, and then ahalyze the data accordingly.
Since such a luxury is not likely to exist, some comzromise
is required.

Error rate; i.e.,errors per 100 source instructions,
is quite commonly used as an error measure anc 1S somewinat
more meaningful than number of errors. It still sutiers,
however, from the fact that a program of ten instructions
with two errors receives the same weight as a program of
100 instructions with 20 errors, one of 1000 instructions
with 200 errors, etc. If the regression of ecrrors as a funciticn
of number of source instructions is in fact linear, ané the
regression line goes through the origin, this procedure
would be guite proper. By linear regression it is not
meant that the relationship should be perfect, but that a

A-2
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straight line gives as good a representation of the rela-
tionship as any curve of higher degree.

If the regression is in fact linear and the line
does not pass through the origin, a better approach would
be to eliminate the linear effect of number of source in-
structions on number of errors by partial correlation and
then analyze the residual error. It is indicated then, also,
that the influence of source instructions should be elim-
inated from all other independent variables.

It would seem that in view of all the problems inherent
in the identification and definition of an appropriate error
measure, a hopeless situation exists. However, if
the problem is formulated in terms of what variables are
used to predict errors, it becomes more clear. First,
recognizing that number of errors and error rats are two
distinct, though related?, approaches to error measurement,
two separate dependent variables exist. To zredict nurlter
of errors, there are variables such as gross characteristics
of program length, mixtures of instructions of varicus tvpes,
program complexity metrics, etc. To predict error rate,
all of these variables used to predict errors, plus other
program characteristics normalized to vrogram length (either
by their rates per 100 source instructions or by partial
correlation) also exist.

When error rate is used as a measure of "rogran reli-
ablility, the question arises as to whether to normalize
errors by the number of total source instructicns, the
number of executable source instructions, or even by &th
number of generated machine language instructions. This is

a problem since the error measure alwavs being analyvzed is

a , . . )
related in that if the total number of errors in the procran

equals zero, the error rate is necessarily zero.



the number of errors found, and at any phase of testing,
there usually exists some (unkrown) number of latent
errors in the program(s).

To clarify this point, consider that two programs
(designated as A and B) exist, each with 400 source in-
structions. A had 300 eXecutable instructions and 2 has
200 executable instructions. During test and integration
(conducted by automated means) suppose four errors in A
and four errors in B were found. MNormalizing by source
instructions, the error rate for A is L.O {(error/100 source
instructions). For B the error rate is also 1.0. However,
by using executable instructions, the error rate for A is 1.33.
For B the error rate is 2.0. (Wot considered here is the

roblem of how many of the executable instructions were
actually executed in the test). Thus, hvpotheticallv

nothing is known of the number of errors in the ncn-executable
(i.e., not non-executed) portion of the orograns.

The solution here is that the normalizing factor should
depend upon the method of testing. If, for example, all
the code is examined (as in a code review), the number of
source instructions shculd be used. If only tic executable
portion of the code is examined for errors, tihe number of

executable instructions should be used.



APPENDIX B

(This Appendix contains descriptions
of the predictor variables for

both samples S8 and sample T as
discussed in Section 2.0),.
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TABLE B-1.

SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS

VARIABLE DESCRIPTION
UNNORMALIZED:

X 1 NUMBER OF SOURCE INSTRUCTIONS

X 2 NUMBER OF ENTRY POINTS

X 3 NUMBER OF EXIT POINTS

X 4 NUMBER OF USING INSTRUCTIONS WHICH
ESTABLISH DATA STRUCTURE INTERFACE

X 5 NUMBER OF COMMENT STATEMENTS

X 6 NUMBER OF LABELED SOURCE INSTRUCTIONS

X 7 NUMBER OF INSTRUCTIONS PERFORMING THE
ARTTHMETIC FUMNCTIONS ADD, SUBTRACT,
MULTIPLY, DIVIDE AND EXPONENTIATION

X 3 NUMBER OF UNCONDITIONAL BRANCH
INSTRUCTIONS

X g NUMBER OF CALL/LINK INSTRUCTIONS

X1y MUMBER OF SYSTEM MACROS
(DOES NOT INCLUDE THE IHSTRUCTIONS
WhICH ARE GENERATED 8Y THE MACROS)

X11 NUMBER OF USER WRITTEN MACROS
(DOES NOT INCLUDE THE INSTRUCTIONS
WHICH ARE GENERATED BY THRE MACROS)

X12 NUMBER OF EQUATE TWNSTRUCTIONS USED TO
EQUATE SYM30LS TO REGISTERS, IMMEDIATE
DATA, OR OTHER VALUES

X13 NUMBER OF COMMEMNTED SOURCE INSTRUCTIGNS
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TABLE B-1. SAMPLE S PREDICTOR VARTABLE DESCRIPTIONS

(CONTINUED)
VARIABLE DESCRIPTION
X1b4 NUMBER OF AND/OR LOGICAL CONMECTORS
X15 NUMBER OF CONDITIONAL BRANCH

INSTRUCTIONS

" X16 NUMBER OF INVOKED FUNCTIONS SUCH AS
FLOOR, SQRT, LOG, ATAMN ETC.

X17 NUMBER OF INSTRUCTIONS PERFORMING
SCALE/POUND OPERATIONS

X18 NUMBER OF SHORT DO INSTRUCTIONS
(WHEN MACHINE CODE GEMERATED BY
CENTRAN DO INSTRUCTIOM WILL BE LESS
THAN 17 BYTES. WUSED TC MINIMIZE LOOP
EXECUTION TIME)

X19 NUMBER OF NESTED SHORT DO LOOPS
X2 3 MUMBER ' OF LOCK MACROS
X21 NUMBER OF SOQURCE INSTRUCTIOMS WITHIN

SHORT DO LOOPS

X272 NUMBER OF ADDRESS VARIABLES REFERENCED

X23 - NUMBER OF TIMES ADDRESS VARIABLES ARE
REFERENCED

X24 NUMBER OF TIMES ALL BINARY VARIABLES

ARE REFERENCED

K25 NUMBER OF CHARACTER VARTABLES
REFERENCED
X26 NUMBER OF TIMES CHARACTER VARITABLES

ARE REFEREMCED
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TABLE B~1. SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS
C(CONTINUED)

VARIABLE DESCRIPTION

X27 NUMBER OF FIXED POINT VARIAELES
RCFLRENCED

X28 NUMBER OF TIMES FIXED-POINT VARIABLES
ARE REFERENCED

X29 NUMBER OF FLOATING-POINT VARIABLES
REFERENCED

X3 NUMBER OF TIMES FLOATING-POINT
VARIABLES ARE REFERENCED

X31 NUMBER OF HEXADECIMAL VARIABLES
REFERENCED

X32 NUMBER OF TIMES HEXADECINAL VARIABLES
ARE REFERENCED

X33 NUMBER OF LABELED-ARRAY VARIABLES
REFERENCED

X34 NUMBER OF TIMES LABELED-ARRAY
VARIABLES ARE REFEREMNCED

X35 NUMBER OF REGISTER VARIABLES
REFERENCED

X36 NUMBER OF TIMES REGISTER VARIABLES
ARE REFERENCED

X37 NUMBER OF VARIAELES WHICH WERE
REFERENCEL BUT NOT DEFIMED WITHIN THE
PROGRAM (UMDEFINED VARIABLES)

X33 NUMBER OF TIMES UNDEFINED VARIABLES

ARE REFEREMCED
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TABLE B-1. SAMPLE S PREDICTOR VARIABLE DESCRIFTIONS

(CONTINUED)

VARIABLE DESCRIPTION

X39 TOTAL NUMBER OF VARIABLES REFERENCED

X4g NUMBER OF TIMES ALL VARIABLES ARE
REFERENCED

X41 NUMBER OF DO LOOPS

X42 NUMBER OF NON-NESTED CO LOOPS

X43 NUMBER OF DO LOOPS NESTED AT SECOND
LEVEL

X4y NUMBER OF DO LOOPS NESTED AT THIRD
LEVEL

X45 NUMBER OF DO LOOPS NESTED AT FOURTH
LEVEL

X46 NUMBER OF DO LOOPS NESTED AT FIFTH
LEVEL

X47 NUMBER OF DO LOOPS NESTED AT SIXTH

LEVEL OR LOWER

X433 NUMBER OF SOURCE IMSTRUCTIONS IN ALL
NON-NESTED DO LOOPS

X49 © NUMBER OF SOURCE INSTRUCTIONS IN ALL
SECOND LEVEL DO LOOPS

X549 NUMBER OF SOURCE INSTRUCTIONS IM ALL
THIRD LEVEL DO LOOPS

X51 NUMBER CF SOURCE INSTRUCTIONS IN ALL
FOURTH LEVEL DO LOOPS



TABLE B-1. SAMPLE S PREDICTOR VARIABLE DESCRIPTICONS
(CONTINUED)

VARIABLE DESCRIPTION

X52 NUMBER OF SOURCE INSTRUCTIONS IN ALL
FIFTH LEVEL DO LOOPS

X573 NUMBER OF SOURCE INSTRUCTIONS IN ALL
SIXTH LEVEL OR LOWER DO LOOPS

X514 AVERAGE NUMBER OF OPERATORS PER
ARITHMETIC INSTRUCTION (X7) X NUMBER
OF SOURCE INSTRUCTIONS

ERRORS /PROGRAM NUMEER OF ERRORS FOUND IN PROGRAM

NCRMALIZED?

X56
X57

X58

X5G
X649

Xb1

X62

. L .
P o= """{ \c“u-‘,‘:é;;

DURING THE TEST AND INTEGRATION PHASE
CF SOFTWARE SYSTEM DEVELOPMENT WHICH
REQUIRED A CHANGE TO THE PROGRAM'S
CODE.

NUMBER OF ENTRY POINTS/X1
NUMBER OF EXIT POINTS/X1

NUMBER OF USING INSTRUCTION WHICH
ESTABLISH DATA STRUCTURE INTERFACE/XI1

NUMBER OF COMMENT STATEMENTS/X1

NUMBER OF LABELED SOURCE IWNSTRUCTIONS/X1
NUMBER OF INSTRUCTIONS PERFORMING THE
ARITHMETIC FUNCTIONS ADD, SUSSTRACT,
MULTIPLY, DIVIDE AMND EXPONENTIATION/X1

NUMBER OF UMCONDITICNAL BRANCH
INSTRUCTIONS/X1

e g m ot *.\2“ . A7 R TR e e

- e

IS > 4



TABLE B-1.

SAMPLE S PREDICTOR VARITABLE DESCRIPTIONS
CCONTINUED)

VARTABLE DESCRIPTION

X63 NUMBER OF CALL/LINK INSTRUCTIONS/X1

X6 NUMBER OF SYSTEM MACROS/X1

X65 NUMBER OF USER WRITTEN MACROS/X1

X66 NUMBER OF EQUATE INSTRUCTIONS USED TO
EQUATE SYMBOLS TO REGISTERS, IMMEDIATE
DATA, OR OTHER VALUES/X1

X67 NUMBER OF COMMENTED SOURCE INSTRUC-
TIONS /X1

X68 NUMBER OF AND/OR LOGICAL CONNECTORS/X1

X69 NUMBER CF CONDITIONAL BRANCH
INSTRUCTIONS /X1

X749 NUMBER OF INVOKED FUNCTIONS SUCH AS
FLOOR, SQRT, LOG, ATAN ETC./X1

X71 NUMBER OF INSTRUCTIONS PERFORMING
SCALE/ROUND OPERATIONS/X1

X72 NUMBER OF SHORT DO INSTRUCTIONS/X1

X73 NUMBER OF NESTED SHORT DO LOOPS/X1

X7 . NUMBER OF LOCK MACROS/X!

X75 NUMBER OF SOURCE INSTRUCTIONS WITHIN
SHORT DO LOOPS/X1

X76 NUMBER OF ADDRESS VARIABLES
REFERENCED/X1 '

X77 NUMBER OF TIMES ADDRESS VARIABLES

L - L. - .3 Ca T e e s o e
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TABLE B-1. SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS

(CONTINUED)
VARTABLE DESCRIPTION
X78 NUMBER OF TIMES ALL BINMNARY
VARIABLES ARF REFERENCED/X1
X79 ‘ NUMBER OF CHARACTER VARIABLES
REFERENCED/X1
X8y NUMBER OF TIMES CHARACTER

VARTABLES ARE REFEREMNCED/X1

X81 NUMBER OF FIXED-POIMT VARIABLES
REFERENCED/ X1

X82 NUMBER OF TIMES FIXED-POINT
VARIABLES ARE REFEREMCED/X1

X83 NUMBER OF FLCOATIMG-POINT
VARIABLES REFEREMNCED/X1

X84 NUMBER OF TIMES FLOATING-POINT
VARIABLES ARE REFERENCED/X1

X85 NUMBER OF HEXADECT!MAL VARIABLES
REFEREMCED/X

X386 NUMBER OF TIMES HEXADECIMAL
VARTABLES ARE REFERENCED/XI

X387 NUMBER OF LABELED-ARRAY
VARIABLES REFERENCED/X1

X38 ' MUMBER OF TIMES LABELED-ARRAY
VARIABLES ARE REFERENCED/X1

X89 NUMBER OF REGISTER VARTABLES
REFEREMCED/X1

X974 NUMBER OF TIMES REGISTEZR VARTABLES
ARE REFERENCED/X!
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TABLE B-1. SAMPLE S PREDICTOR VERIABLE DESCRIPTIONS
(CONTINUED)

VARTABLE DESCRIPTION

X91 NUMBER OF VARIABLES WHICH WERE |
REFEREMNCED BUT NOT DEFINED WITHIN
THE PROGRAM (UNDEFIMED VARIABLE)/

X1

X92 NUMBER OF TIMES UNDEFIMNED
VARTABLES ARE REFEPENCED/X1

X953 TOTAL NUMBER OF VARIABLES
REFERENCED/X1

X9y NUMBER OF TIMES ALL VARTABLES.
ARE REFEREMCED/X1

X95 NUMBER OF DO LOOPS/X1

X96 NUMBER OF NON-NESTED DO LOOPS/X1

X97 NUMBER OF DO LOOPS NESTED AT

SECOND LEVEL/X1

X938 NUMBER OF DO LOOPS NESTED AT
THIRD LEVEL/X1

x99 NUMBER OF DO LOOPS MNESTED AT
FCURTH LEVEL/X]1

X179 NUMBER OF DO LOOPS NESTED AT
- FIFTH LEVEL/X1

X191 NUMBER OF DO LOOPS NESTED AT
SIXTH LEVEL OR LOWER/X1

X1§2 NUMBER OF SQURCE IMSTRUCTIONS IN
ALL NON-NESTED DO LOOPS/X1

X193 NUMBER OF SOURCE IMSTRUCTIONS IN
ALL SECOND LEVEL DO LOOPS/X1
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TABLE B~-1.

SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS
(CONTINUED)

VARIABLE DESCRIPTION
X134 NUMBER OF SOURCE INSTRUCTIONS
IN ALL THIRD LEVEL DC LOOPS/X1
X1d5 NUMBER OF SOURCE INSTRUCTIONS
IN ALL FOURTH LEVEL DO LOOPS/X1
X136 NUMBER OF SCOURCE INSTRUCTIONS
IN ALL FIFTH LEVEL DO LOCPS/X1
X147 NMUMBER OF SOURCE IMSTRUCTIONS
IN ALL SIXTH LEVEL OR LOWER
D0 LOOPS/X1
X138 AVERAGE NUMBES OF CPERATORS PER

ERROR RATE /PROGRAM

ARITHMETIC INSTRUCTION (X7) X
NUMBER OF SOURCE INSTRUCTIONS/X1

NUMBER OF ERRORS PER 149 LINES OF
SOURCE CODE FOUND DURING THE TEST
AND INTEGRATION PHASE OF SOFTWARE
SYSTEM DEVELOPMENT WHICH REQUIRED
A CHANGE TO THE PROGRAM'S CODE/X1

aALL NORMALIZED VARIABLE VALUES WERE ACTUALLY COMPUTED BY
MULTIPLYING THE RESPECTIVE UNNORMALIZED VALUES B8Y 1£4/X1.

EACH NORMALIZED VARIABLE

INTERPRETED THEMN AS THE VALUE

OF THE ORIGINAL OR UNNCRMALIZED VARIABLE PER 1H4g LINES OF

SOURCE CODE.



TABLE 3-2. SAMPLE T PREDICTOR VARIABLE DESCRIPTIQHNS

VARIABLE DESCRIPTION

UNNORMALIZED:

1. TS TOTAL SOURCE STATEMENTS IN THE
PROGRAM (TS=NEX+EX)

2. LL COMPUTED LOOP COMPLEXITYZ

3. IF COMPUTED IF COMPLEXITY?

L, BR TOTAL PROGRAM BRANCHES

5. LS NUMBER OF LOGICAL STATEMENTS IN
PROGRAM

6. AP NUMBER OF DIRECT PROGRAM INTERFACES

WITH OTHER APPLICATION PROGRAMS
(NOT A COUNT OF CALLS TO OTHER
PROGRAMS)

7. SYS NUMBER OF DIRECT PROGRAM INTERFACES
WITH OPERATING SYSTEM OR SYSTEM
SUPPORT PROGRAMS (NOT A COUNT OF
CALLS TO SYSTEM PROGRAMS)

8. 1/0 NUMBER OF INPUT/OUTPUT STATEMENTS
IN PROGRAM

Q. COMP NUMBER OF COMPUTATIONAL STATEMENTS
IN PROGRAM

14. DATA : NUMBER OF DATA HANDLING STATEMENTS
IN PROGRAM

11. NEX NUMBER OF NON-EXECUTABLE STATEMENTS
IN PROGRAM

12. EX MUMBER OF EXECUTABLE STATEMENTS IN
PROGRAM

13. TI TOTAL PROGRAM INTERFACES WITH OTHER

PROGRAMS (TI=AP + SYS)
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SAMPLE T PREDICTOR VARIABLE DLCSCRIPTIUINS

TABLE B-2,
(CONTINUED)

VARIABLE DESCRIPTION

14. COM NUMBER OF COMMENT STATEMENTS IN
PROGRAM (COMMENTS ARE NOT
INCLUDED IN THE COUNT OF NON-
EXECUTABLE STATEMENTS, NEX)D

15. RAT AVERAGE PROGRAMMER RATING (THIS
VALUE IS AN AVERAGE BASED ON THE

. RATINGS OF EACH PROGRAMMER WHO

WORKED ON THE PROGRAM)

16. WKLD AVERAGE WORKLOAD OF PROGRAMMERS
WHO WORKED ON THE PROGRAM.

17. ERRORS/PROGRAM NUMBER OF PROGRAMMING ERRORS FOUND
IN THE PROGRAM WHICH REGUIRED A
CHANGE TO THE PROGRAM'S CODE

18. RAT/WKLD RATIO OF AVERAGE PROGRAMMER
RATING TO AVERAGE PROGRAMMER
WORKLOAD

c.

NORMALIZED  :

19. LL/TS MEASURE OF LOOP COMPLEXITY PER
168 LINES OF SOURCE CODE

28. IF/TS MEASURE OF IF COMPLEXITY PER
19§ LINES OF SOURCE CODE

21. BR/TS NUMBER OF BRANCHES PER 1f¢ LINES
OF SQURCE CODE

22. LS/TS NUMBER OF LOGICAL STATSMENTS PER
19 LINES OF SOURCE CODE

23. AP/TS NUMBER OF APPLICATION PROGRAM

INTERFACES PER 170 LINES OF SOURCE
CODE
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Table B-2,

SAMPLE T PREDICTOR VARIABLE DESCRIPTIONS (CONTINUED)

FOOTNOTES:

2 LL ’zi"iwi ,

c

where, Q
1 ui-l)
W, = (~— , such that VZw‘ = 1
i [ i
URal B8 .
i=1

Mi a number of loops in program at the ith

level of nesting
wi = a welghting factor
8] = maximum level of nesting used in tho systom
[ = a shaping value

IF =2:-1iwi,

whore,

Ni = number of “IF's" in prouram at the ith
level of nesting

wi = a welghting factor, the same as indicated
for loop complexity measure

AllL normalized variable values wore conputed by
rmultivlying the respective unnormalized values by

lo0/1s.




APPENDIX C

(This Appendix contains the list of
predictor variables used and eliminated
(a priori) when predicting errors and
error rate f£or both data samples, as

discussed in Section 5.6).
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TABLE C-1, SAMPLE S, LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ERRORS/
PROGRAM & ERROR RATE/PROGRAM

PROJECTS
SAMPLE S VARIABLES M B P
X 1 SCQURCE INSTRUCTIONS ®
X 2 ENTRY POINTS
X 3 EXIT POINTS
X & USING INSTRUCTIONS
X 5 COMMENT STATEMENTS
X 6 LABELED INSTRUCTIONS
X 7 ARITHMETIC INSTRUCTIONS
X 8 UNCONDITIONAL JUMPS
X 9 CALLS/LINKS
X1lg SYSTEM MACROS
X1l USER MACROS
X12 EQUATE STATEMENTS
X13 COMMENTED INSTRUCTIONS
X14 LOGICAL CONNECTORS
X15 CONDITIONAL JUMPS
X16 FUNCTIONS
X17 SCALING/ROUNDING OPERATIONS
X18 SHCORT DO LOOPS
X19 NESTED SHORT DO LOOPS
X2 LOCK MACROS 1
X21 INSTRUCTIONS IN SHORT DO LOOPS 1
X22 ADDRESS VARIABLES
X23 ADDRESS VARIABLE FREQUENCY
X24 BINARY VARIABLE FREQUENCY 1 1 1
X25 CHARACTER VARIABLES 1 1 1
X26 CHARACTER VARIABLE FREQUENCY 1 1 1
X27 FIXED-POINT VARIABLES
%28 FIXED-POINT VARIABLE FREQUENCY
X29 FLOATING-POINT VARIABLES
X3@ FLOATIMG-POINT VARIABLE FREQUENCY
X31 HEXADECIMAL VARIABLES 1 1 1
X32 HEXADECIMAL VARIABLE FREQUENCY 1 1 1
X33 LABELED-ARRAY VARIABLES
X34 LABELED-ARRAY VARIABLE FREQUENCY 2 2 2
X35 REGISTER VARTABLES
X36 REGISTER VARIABLE FREQUENCY
X37 UNDEFINED VARTABLES
X38 UNDEFINED VARI[ABLE FREQUENCY
X39 TOTAL VARIABLES 2 3 3
X4 TOTAL VARIABLE FREQUENCY 3 _3 3
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TABLE C-1.

SAMPLE §,

LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ERRORS/
PROGRAM & ERROR RATE/PROGRAM (CONTINUED)

PROJECTS
SAMPLE S VARIABLES M 5] P

| X41 TOTAL DO LOOPS 3 3 3

1 X42 NON-NESTED DO LQOPS

] X43 DO LOOPS NESTED AT 2ND LEVEL

: X44 DO LOOPS NESTED AT 3IRD LEVEL

: X45 DO LOOPS NESTED AT 4TH LEVEL

: X46 DO LOOPS NESTED AT STH LEVEL

/ X47 DO LONPS NESTED AT 6TH LEVEL OR LOWER

: X48 INSTRUCTIONS IN NON NESTED DO LOQPS
: X49 INSTRUCTIONS IN 2ND LEVEL DO LOOPS
X5¢ INSTRUCTIONS IN 3RD LEVEL DO LOOPS

J X51 INSTRUCTIONS IN &4TH LEVEL DO LOOPS
i X52

INSTRUCTIONS IN STH LEVEL DO LOOPS

: X53 INSTRUCTIONS IN 6TH LEVEL OR LOWER

d DO LQOPS

] X54 SOURCE INSTRUCTIONS X AVERAGE NUMBER

) OF OPERATORS/ARITHMETIC INSTRUCTION

X55 NO. OF PROGRAMMING ERRORS FQUND DURING |[DEPEMNDENT VARIABLE

: THE TEST & INTEGRATION (T&1) PHASE ERRORS/PROGRAM
: X56 ENTRY POINTS/X!
) X57 EXIT POINTS/X1
) X58 USING INSTRUCTIONS/X1
X59 COMMENT STATEMENTS /X1
: X6fd LABELED INSTRUCTIONS/X1 B
H X61 ARITHMETIC INSTRUCTIONS/X1 |
! X62 UNCONDITIONAL JUMPS/X1

X63 CALLS/LINKS/X1
) X64 SYSTEM MACROS/X1 ]
f X65 USER MACROS/XI ]

X66 EQUATE STATEMENTS/X1
X67 COMMENTED INSTRUCTIONS/X1

: X68 LOGICAL CONMNECTORS/X1 A
] X69 CONDITIONAL JUMPS/X1
' X78 FUNCTIONS/X1
3 X71 SCALING/ROUNDING OPERATIONS/XI

. X72 SHORT DO LOOPS/X1

X73 NESTED SHORT DO LOOPS/X1
¢ X74% LOCK MACROS/X1 1
X75 INSTRUCTIONS IN SHORT DO LOOPS/X! 1
X76 ADDRESS VARIABLES/X1
X77 ADDRESS VARIABLE FREQUENCY/X1

C-3
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TABLE C-1. SAMPLE S5, LIST QOF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ZIRRORS/
PROGRAM & ERROR RATE/PROGRAM (CONTINUED)

e e e ke -

: 3
3 PROJECTS j
3 SAMPLE S VARIABLES M B p
! X78 BINARY VARIABLE FREQUENCY/X1 1 1 1 %
1 X79 CHARACTER VARIABLES/X1 1 1 1 |
y X8f§ CHARACTER VARIABLE FREQUENCY/X1 1 1 1 ]
1 X81 FIXED-POINT VARIABLES/X1 |
1 X82 FIXED-POINT VARIABLE FREQUENCY/X1 5
X83 FLOATING-POINT VARIABLES/X!
X84 FLOATING-POINT VARIABLE FREQUENCY/X1
X85 HEXADECIMAL VARIABLES/X1 1 1 1
X86 HEXADECIMAL VARIABLE FREQUENCY/X1 1 1 1
X87 LABELED-ARRAY VARIABLES/X1
X88 LABELED-ARRAY VARIABLE FREQUENCY/X1 2 2 2
X89 REGISTER VARIABLES/XI
X9f# REGISTER VARIABLE FREQUENCY/X1
o X91 UNDEFINED VARIABLES/X1
1 X92 UNDEFINED VARIABLE FREQUENCY/X1
5 X93 TOTAL VARIABLES/X1 3 3 3
; X94 TOTAL VARIABLE FREQUENCY/X1 3 3 3
{ X95 TOTAL DO LOOPS/X1 3 3 3
E X96 NON-NESTED DO LOOPS/X1
; X97 DO LOOPS NESTED AT 2ND LEVEL/X!
{ X98 DO LOOPS NESTEL AT 3RD LEVEL/X1
A X99 DO LOOPS NESTED AT 4T LLVEL/X1
! X1g@ DO LOOPS NESTED AT 5T!1 LEVEL/X1 _
3 X181 DO LOOPS NESTED AT 6T+ LEVEL OR
! LOWER/ X1
§ X182 INSTRUCTIONS IN NON NESTED DO
"} LOOPS /X1
- | X183 INSTRUCTIONS IN 2ND LEVEL DO LOOPS/X1
: X1g§4 INSTRUCTIONS IMN 3RD LEVEL DO LOOPS/X1 ]
: X175 INSTRUCTIONS IN 4TH LEVEL DO LOOPS/X1
X106 INSTRUCTIONS IN STH LEVEL DO LOOPS/X1
3 X1g7 INSTRUCTIONS IN 6TH LEVEL OR LOWER
; DO LOOPS/X1
’ X108 SOURCE INSTRUCTIONS X AVERAGE NUMUER
. OPERATORS/ARITH. IMSTRUCTION/X1
-8 X149 (MO. OF PROGRAMMING ERRORS FOUND DEPENDENT VARIABLE|,
" DURING TSI PHASE)/X1 ERROR RATE/PGM.,




TABLE C-1, SAMPLE S, LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ERRORS/
PROGRAM & ERROR RATE/PROGRAM

FOOTNOTES

¥ THE EMPTY CELLS IN THIS TABLE ARE USED TO IDENTIFY THOSE
PREDICTOR VARIABLES THAT WERE MADE AVAILABLE FOR AUTO-
MATIC SELECTION BY THE STEPWISE REGRESSION PROCEDURE FOR
ENTRY INTO THE PREDICTION EQUATION.

A PRIORI VARIABLE ELIMINATION CRITERIA

1 THE VARIABLES' DATA VALUES WERE ALL ZERO IN THE SAMPLE.
CAPPARENTLY, THE VARIABLES COULD HAVE BEEN UNAVAILABLE,
NOT COLLECTED OR COUNTED DURING THE PROGRAM SCANNING
OPERATION, MON-EXISTENT, OR NOT APPLICABLE I[N THE
PROGRAMS THAT WERE USED FOR THIS ANALYSIS),

2 THE VARIABLE WAS HIGHLY CORRELATED WITH ANOTHER PREDIFTOR
VARTABLE, (NOTE: THE CORRELATION COEFFICIENTS

AND RXB? X58° WERE FOUND TO BE 1.4J IN EACH F’R(.);JEC}FBE'KSI+

SAMPLE; THEREFORE OMLY ONE VARIABLE FROM EACH PAIR,
X33 AND X87 RESPECTIVELY, WERE MADE AYAJLABLE FOR
SELECTION [N THE STEPWISE REGRESSION PROCEDURE),

3 THE VARIABLE 1S A LIMNEAR COMBINATION OF OTHER PREDICTOR
VARTABLES. NOTE:

X39 = X22 4 X25 + X27 4+ X29 + X31 + X33 + X35 + X37

X4@ = X23 4 X2L + X26 + X28 + X3 + X32 + X34 + X36 + X38

X41 = X18 + X199 + X422 + X43 4+ X444 4+ XU5 + X46 + Xu47

X93 = X76 + X79 + X811 + X83 + X85 4+ X87 + X89 + X91

XQU = X77 4+ X78 + X8y + X382 + X84 4+ X886 + X888 + X9d + X92

X35 = X72 + X73 + X96 4 X97 + X98 + X99 + X1gg + X1yl
c-5
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TABLE C-2, SAMPLE T, LIST OF PREDICTOR VARIABLES USED AND

ELIMINATED (A PRIORI) WHEN PREDICTING ERRORS/
PROGRAM

PROGRAM STRUCTURE +

: PROGRAMMER VARTABLES PROGRAM STRUCTURE VARIABLES ONLY

SUBSYSTEM SUBSYSTEM
VARTABLE A B €C D E F A B c D E F G H

LEo S,

TR SRR,

o T

R

N =~

Fay

e AL e SRS

Sl

R S R T T T A T T,

-

— e
FalE VO RS s oL IS S o RV N S N S
e o & % 8 e ® 8 « .

—
i
.

16.

5.

TS
LL
IF
BR
LS
AP
SYS
I/0
coMp
DATA
NE X
EX
Tl
coM
RAT
WK LD
RAT/
WKLD
LL/TS
IF/TS
BR/TS
LS /TS

. AP/TS

SYS/TS
10/7S
COMP /TS

. DATA/TS

NEX/TS
EX/TS

. TUL/TS

COM/TS

—

»N
=R e
—
B s B b

P s 2D
—

2 2 2 2 2 12

2 2 2 2 2 2

,...

N PO
—

N = N
PN
[N N

SIS e

ISR S

N NN
W W AN
W W

\H N

W W W
AN AN AN
W W
Wi W W

TOTAL

23 23 23 23 23 23

] PREDIC-
TORS USED




TABLE C-2, SAMPLE T, LIST OF PREDICTOR VARIABLES USED AND

ELIMINATED (A PRIORI) WHEN PREDICTING ERRORS/
PROGRAM (CONTINUED)

"
THE EMPTY CELLS IN THIS TABLE ARE USED TO IDENTIFY THOSE
PREDICTOR VARIAELES THAT WERE MADE AVAILABLE FOR AUTOMATIC

SELECTION BY THE STEPWISE REGRESSION PROCEDURE FOR ENTRY
INTO THE PREDICTOR EQUATION.

A PRIORI VARIABLE ELIMINATION CRITERIA

lTHE VARIABLE WAS HIGHLY CORRELATED WITH ANOTHER PREDICTOR
VARIABLE.

2THE VARIABLE IS A LINEAR COMBINATION OF OTHER PREDICTOR
VARTABLES.

NEX = TS-EX

TI =  AP+SYS
NEX/TS = 1-EX/TS
TI/TS = AP/TS+S5YS$/TS

3THE VARIABLE WAS NOT APPLICABLE FOR THIS SET OF COMPUTER RUNS.

(NOTE - OME OF THE FOUR FREDICTURS (BR, LS, DATA, EXD HAVING
THE HIGHEST CORRELATION WITH ERRORS, AND THE TS VARI-
A3LE, WERE BOTH MADE AVAILABLE FOR SELECTION, EACH
PREDICTOR THEN COULD BE SWAPPED FOR THE OTHER (SINCE
ALL FIVE PREDICTORS WERE HMIGHLY CORRELATED) USING THE
FSWAP SELECTION ALGORITHM),
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TABLE c-3, SAMPLE T, LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ERROR
RATE/PROGRAM

PROGRAM STRUCTURE +
PROGRAMMER VARIABLES PROGRAM SSSEETURE VARIABLES
SUBSYSTEM SUBSYSTEM
VARIABLE /, B C D E ¥ A B C¢C D E F 6 H
1. TS i
2. LL
3. IF
X 4. BR 1 1 1 1 1 1 1 1 1 1 1
[ 5. LS 1 1 1 1 1 1
6. AP
7. SYS
8., 1/0
9. COMP
1. DATA 1 1 1 1 1 1 1 1 1 1 1 1 1
11. MEX 2 2 2 2 2 2 2 2 2 2 2 2 2
; 12. EX 1 1 1 1 1 1 1 1 1 1 1 1
g 13. TI 2 2 2 2 2 2 2 2 2 ) 2 2 2 2
‘ 4. con
15. RAT 3 3 3 z 3 3 3 3
, 16. WKLD 3 3 3 3 3 3 3 3
3 17. RAT/ 3 3 3 3 3 3 3 3
' WKLD .
1. LL/TS
y 19. IF/TS
1 2. BR/TS
) 21. LS/TS
] 22. AP/T53
1 23. SYS/TS
24, 10/TS
i 25. COMP/TS
3 26. DATA/TS
: 27. NEX/TS 2 2 2 2 2 2 2 2 2 2 2 2 2 2
' 23. EX/TS
1 29. TI/TS 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3. COM/TS
i TOTAL 23 23 23 23 23 23 20 29 28 280 28 24 24 24
! PREDIC-
TORS USED
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TABLE C-3. SAMPLE T, LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ERROR
RATE/PROGRAM (CONTINUED)

THE EMPTY CELLS IN THIS TABLE ARE USED TO IDENTIFY THOSE
PREDICTOR VARIABLES THAT WERE MADE AVAILABLE FOR AUTOMATIC
SELECTION BY THE STEPWISE REGRESSION PROCEDURE FOR ENTRY
INTO THE PREDICTION EQUATION.

A PRIORI VARIABLE ELIMINATION CRITER#A

1THE VARTABLE WAS HIGHLY CORRELATED WITH ANOTHER PREDICTOR

VYARIABLE,

2THE VARIABLE IS A LINEAR COMBINATION OF OTHER PREDICTOR

VARIABLES,

NEX = TS-EX

TI = AP+SYS
NEX/TS = 1-EX/TS
TI/TS = AP/TS+SYS/TS

3THE VARTABLE WAS NOT APPLICABLE FOR THIS S$SET OF COMPUTER RUNS.

(NOTE - ONE OF THE FOUR PREDICTORS (BR, LS, DATA, EX) HAVING
THE HIGHEST CORRELATION WITH ERROR RATE,AND TH" TS
VARTABLE, WERE BOTH MADE AVAILABLE FOR SELECTION.
EACH PREDICTOR THEMN CCULD BE SWAPPED FOR THE OTHER
(SINCE ALL FIVE PREDICTORS WERE HIGHLY CCRRELATED)
USTNG tE FSWAP ALGORITHM),




BASE UNITS:
Quantity
length
nass
time

electric current
thermodynamic temperature
amount of substance
luminous intenmity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS:

Acceleration

activity {of a radioactive sourcel
angular acceleration
angular velocity

area

density

elactric capacitance
electrical conductance
eloctric: fiald strength
slectric inductance
electric potential difference
slectric resistance
electromotive force
enurgy

entropy

force

frequency
illuminance
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power

pressure

quantity of electricity
quantity of heat
radiant intensity
specific heat

stress

thermal conductivity
vetlooly

viseosity, dynamit
viscosity. kinematic
valiage

volume

wavenumber

wiirk

SI PREFIXES:

Multiphcation F

1 DOO LD KOO D50
1 000 000 000

1 000 000

1o

00

10 -

01
001

000y -

000G 0o

0.000 HOO OM

0.000 000 00O 001

0 V00 000 00N (Oa O01

{1 GO0 6U0 000 HOO DH0 Q01

* To be wvoided where possible

METRIC SYSTEM

Unit

melre
kilogram
second
ampere
kelvin
mole
candela

radian
steradian

metre per second squared
disintegration per second
radian per second squared
radian per second

square metre

kilogram per cubic metre
farad

siemens

volt per metre

henry

valt

ohm

volt

joule

joule par kelvin

newton

hertz

lux

candela per squars metre
lumen

amprre per metre

waber

tesla

ampere

watt

pascal

coulamb

joule

watt per steradian

joule per kilogram-kelvin
pastal

wall prr metre-kelvin
metre per second
puscat-socond

square metre per secand
volt

cubic metre

reciprocal metre

joule

actors

1012
0"
HUd
!
10!
1!
!
10 2
10
T
10 v
o 2
"
1“ 1.3

SI Symbol

3 x>

ol
od

rad
sr

Profix

lore
HIK8
ninga
kilo
hocto®
doka*
dect®
centi®
miili
micro
auna
pico
fomto
alto

Formula

mis
{disintegration)/s
rad/s
rad/s
m
kg/m
A8V
AN
Vim
V-alA
WA
VIA
WA
Nem
LS
kg-m/s
{cycle)s
Im/m
cdim
cdrsr
A/m
Vs
Wwb/m
Jis
Nim
A
N-m
Wisr
JikgK
Nim
wm:K
mis
Pas
mis
WA
m

{wave)m
Nem

51 Symbal

T
G
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MISSION
of

Rome Avwr Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(C3) activities, and in the ¢? areas ox information sclences
and intelllgence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intslligence
data collection and handling, information system technology,
ionospheric propagation, solid state sclences, microwave
physics and electronic reliability, maintainebility and
compatibility.
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